纳米有机半导体光催化剂

摘要:近年来,有机半导体因其独特可调的化学结构及光电性质越来越多地被应用于高效可见光催化领域。但是,有机材料本身化学键弱、载流子迁移率低,导致其催化效率低、稳定性差。因此,将有机半导体进行纳米组装及其构建异质结构,得到零维、一维、二维或多元复合纳米有机光催化剂,成为近几年的研究热点。零维粒子尺寸小、比表面积大; 一维结构长程有序排列、表面缺陷密度降低; 二维结构在增大表面活性位点的同时能最大限度地缩短电荷在材料内部的迁移距离而表现出更高的光生电荷利用率; 纳米复合结构的异质界面可以有效促进光生电子-空穴对的分离,因此在提高光催化活性及稳定性方面具有重要意义。同时,纳米有机光催化剂种类丰富,催化机理各不相同,因此被广泛应用于分解水或空气中污染物的光催化领域。本综述中归纳了各类纳米有机光催化剂的制备方法、结构特性以及光催化应用,同时对多种光催化机制进行了介绍,并对其应用前景进行了展望。

金属- 有机框架材料在光催化二氧化碳还原中的应用

摘要:CO2的过度排放导致全球环境问题日益严重,如何将CO2有效地利用起来成为全世界的研究热点。相比于高耗能的CO2捕获和储存( CCS) 技术,通过催化反应将CO2转化为有价值的能源燃料是同时解决能源危机和环境问题的有效途径。其中,使用太阳能作为能量来源的光催化CO2还原技术更具应用前景。但是目前CO2光还原催化剂仍然存在很多缺点,如可见光响应能力低、光生电子空穴对复合严重、CO2吸附量小、产物的选择性低以及在含水环境中的产氢竞争反应等。金属-有机框架( MOFs) 是由金属离子/簇和有机配体构成的一类独特的多孔晶态材料,具有可调的多孔结构、电子迁移速度快、CO2吸附量大等优点,在光催化CO2还原领域具有广阔的应用潜力。现有方法主要是通过对MOFs 的功能化修饰、与其他功能型材料复合等获得高效的光还原CO2的催化性能。本文主要对近年来MOFs 基CO2光还原催化剂( 单一MOFs、MOFs 基复合材料以及MOFs 衍生材料) 的研究现状进行了分析和讨论,并对MOFs 材料在光催化CO2还原中的发展趋势进行了展望。

碳基非金属催化剂在有机合成领域的应用及机理研究

摘要:碳基非金属催化剂是指包括碳纳米管(CNTs)、氧化石墨烯(GO)、石墨烯(G)、活性炭(AC)及其掺杂或修饰后得到的材料作为用于涉及能量转换等关键反应过程的催化剂. 碳基非金属催化剂由于具有来源丰富、成本低、对环境友好、后处理简单、可持续发展等优点, 近年来被成功应用于有机合成领域. 基于碳基非金属催化剂应用于氧化反应、还原反应、取代反应和偶联反应被成功报道, 但针对碳基非金属催化剂应用于有机合成领域进行催化的活性位点的研究目前仍处于早期发展阶段. 近年来, 科学家们针对其机理的研究主要集中于对催化剂的表征分析和第一性原理计算,但未得出相对一致的实验结论. 对碳基非金属催化剂在有机合成领域的应用及机理研究进行了综述.

有机电子传输材料在反式钙钛矿太阳能电池中的研究现状

摘要:近年来,反式结构的钙钛矿太阳能电池凭借制备工艺简单、可低温成膜、迟滞效应低、适合与传统太阳能电池结合制备叠层器件等优点,受到了人们广泛的关注,经过几年的发展,反式钙钛矿太阳能电池的光电转化效率已从3.9%提升到25.37%。其中电子传输层作为钙钛矿太阳能电池的重要组成部分,在提取和运输载流子、阻挡空穴、调节界面能级结构和抑制电荷复合等方面起着关键性的作用。一些有机材料(富勒烯及其衍生物、苝二酰亚胺、萘二酰亚胺等)凭借容易合成和纯化、能级可调、电子迁移率高、溶解性好、化学/热稳定性良好等优势,已经广泛应用于反式钙钛矿太阳能电池。本文主要介绍了不同有机电子传输材料在反式钙钛矿太阳能电池中的研究现状,还介绍了电子传输层掺杂和界面修饰两种提升器件性能的改性手段,旨在为开发全新的有机电子传输材料提供基础性的理论指导。

两亲性丙烯酸酯聚合物的制备与结构表征

摘 要: 以过硫酸钾( K2 S2O8 ) 为自由基引发剂, 以 M S 1 和 OP 10 为乳化剂, 丙烯酸酯单体通过乳 液聚合制备了具有两亲性的丙烯酸酯聚合物。讨论了功能单体甲基丙烯酸( M AA) 在聚合物粒子 上的分布情况。结果表明, 当 M AA 的量占总单体的 3%( 质量分数, 下同) 时, 水相中的羧基占羧 基总量的 6. 1%, 聚合物表面羧基为 50. 75% 。

金属有机骨架在电致变色领域的研究进展

摘要:金属有机骨架(MOFs)是由有机骨架与金属节点组成的多孔新型功能材料,区别于普通的无机多孔材料和有机物,凭借多孔以及可设计性的骨架结构,实现将无机与有机材料相结合,利用化学配位以及掺杂等方式可以制备符合实际需求的功能材料。随着金属有机骨架材料的种类、功能和制备技术不断拓展,其在智能光电显示领域的应用也备受关注。其中,电致变色作为光电器件的重要研究方向,电致变色器件正在向更大变色范围、更快变色速度以及柔性可折叠的方向发展,原有材料体系已无法满足新的产品要求,但金属有机骨架的出现可以在一定程度上规避这些问题。本文着重介绍金属有机框架在电致变色的研究进展,详细综述金属有机框架在电致变色领域应用中所遇到的三个问题,分别是导电性、氧化还原性变色及薄膜制备手段,分析金属有机框架在电致变色领域的设计优化策略,同时也对MOFs在电致变色多功能应用所面临的挑战与发展前景进行总结。

环氧树脂基辐射防护材料研究进展

摘要:介绍了γ射线和中子射线的特性及屏蔽机理,阐述了具有γ射线防护功能、中子防护功能、中子伽马混合场防护功能的环氧树脂基复合材料的研究进展,展望了环氧树脂基屏蔽材料未来的发展与挑战。

咔唑及其衍生物在蓝光OLED中的应用

摘要:咔唑及其衍生物因其特有的电学性能、电化学性能和光物理性能而被广泛研究。由于这类材料不仅可以作为良好的空穴传输材料,而且在咔唑化合物的不同位置引入电子传输修饰基团,可以使得电子和空穴更加易于注入,并且可以很好地调节两者的平衡,因此,咔唑及其衍生物被认为是一类重要的蓝光荧光材料。咔唑及其衍生物不仅可以以小分子形式应用到蓝光荧光材料、蓝光磷光材料和热致延迟荧光材料,同样可以以高分子形式应用到蓝光荧光材料中。近年来,关于咔唑及其衍生物发光材料的合成及应用成为蓝光OLED研究的热点。本文综述了近年来国内外小分子咔唑及其衍生物作为蓝光有机电致发光主体材料的研究状况,对其分子结构设计光、电子轨道结构、物理性质、热学性质、电化学性质及器件性能等方面作了详细归纳比较,同时归纳了含咔唑结构的聚合物蓝光有机电致发光材料的研究进展,最后展望了咔唑基蓝光有机电致发光主体材料的发展前景和趋势。从光电转换效率及价格方面来说,热致延迟荧光材料和聚合物(含咔唑类基团) 发光材料是最具有前景的蓝光OLED材料。

基于有机电化学晶体管的感存算一体化神经界面器件展望

摘要:生物神经系统具有复杂且独特的结构, 能够以极为高效的方式进行信息处理. 随着人工智能的快速发展, 传统的冯•诺依曼架构正面临前所未有的挑战. 脑机接口、智能假肢和神经机器人等领域的核心在于构建神经界面器件, 即在神经系统与外部设备之间构建直接进行信息传递的接口. 然而, 传感器、存储器和计算单元在物理上的分离限制了处理效率和功耗控制. 面对突破冯•诺依曼瓶颈和发展新型神经界面的需求, 感存算一体化正成为下一代智能系统和神经界面的核心. 尽管尚未实现包含所有这些功能的集成系统并应用于生物体中, 但有机电化学晶体管凭借其优异的特性, 为先进的神经系统模拟和生物接口技术的发展开辟了新的途径. 发展基于有机电化学晶体管的神经界面器件显示出广阔的前景, 对推进智能生物电子学的进步具有重要意义.

二氧化碳化学转化的科学基础及其路径

摘要:二氧化碳(CO2)是主要的温室气体, 也是丰富的可再生资源, 通过催化转化可定向制备为化学品、能源产品与功能材料, 即实现“变废为宝、高值化利用”的资源化利用过程. 因此, 面向资源化/能源化利用的二氧化碳化学研究, 对于可持续发展具有重要意义及应用前景. 二氧化碳资源化利用的贡献不仅仅局限于减排的绝对量, 更重要的意义与价值在于: (1) 减缓化工生产对化石资源的依赖; (2) 提供更加环境友好的生产方法, 减少化工生产对环境的影响; (3) 在一定程度上调节碳循环. 我们试图从热力学、动力学角度分析CO2转化反应所涉及的CO2活化、能量问题、作用机制和催化剂的理性设计等科学基础, 并提出相应的转化途径. 本文基于CO2分子活化原理认识及转化路径分析, 介绍CO2资源化领域的现状, 分析所面临的挑战; 主要包括热催化转化及反应类型、电催化CO2还原及电羧化反应、光催化CO2还原及光驱动CO2参与的有机反应, 并简要介绍过程耦合、接力催化等策略及生物催化和耦合策略、等离子体催化技术在二氧化碳资源化中的应用. 总之, 对于二氧化碳化学的基础科学认识, 为发展二氧化碳资源化新反应、新方法与新技术提供理论支撑, 推动二氧化碳基产品的规模化生产与工业应用.