基于有机电化学晶体管的感存算一体化神经界面器件展望

摘要:生物神经系统具有复杂且独特的结构, 能够以极为高效的方式进行信息处理. 随着人工智能的快速发展, 传统的冯•诺依曼架构正面临前所未有的挑战. 脑机接口、智能假肢和神经机器人等领域的核心在于构建神经界面器件, 即在神经系统与外部设备之间构建直接进行信息传递的接口. 然而, 传感器、存储器和计算单元在物理上的分离限制了处理效率和功耗控制. 面对突破冯•诺依曼瓶颈和发展新型神经界面的需求, 感存算一体化正成为下一代智能系统和神经界面的核心. 尽管尚未实现包含所有这些功能的集成系统并应用于生物体中, 但有机电化学晶体管凭借其优异的特性, 为先进的神经系统模拟和生物接口技术的发展开辟了新的途径. 发展基于有机电化学晶体管的神经界面器件显示出广阔的前景, 对推进智能生物电子学的进步具有重要意义.

金属有机框架材料吸附重金属离子和放射性核素的研究进展

摘要:金属有机框架(MOFs)是一类无机-有机配位的多孔材料。与传统吸附剂相比,MOFs 具有结构可设计性、功能多样性、比表面积大和孔隙率高等优点,可通过前合成和后修饰法调节孔径大小、引入特定官能团或活性位点,实现快速、高效地分离水中的重金属离子和放射性核素,对资源回收和环境修复意义重大。本文详述了MOFs吸附砷、铬和汞等重金属离子,吸附铀和锝等放射性核素的研究现状及作用机理,总结了提高MOFs 吸附性能的方法,提出了MOFs作为重金属和放射性核素吸附剂时亟需解决的问题。

纳米金属有机框架在肿瘤靶向治疗中的应用

摘要:金属有机框架材料(Metal-organic frameworks,MOFs)是一类由金属离子和功能有机配体通过配位键构成的多孔配位聚合物,具有易于合成和功能化、结构可调、比表面积大以及负载量高等特点,已被广泛应用于催化、气体吸附、分离、存储、传感和检测等领域。纳米金属有机框架( Nanoscale metal-organicframeworks,NMOFs)具有纳米颗粒的特殊性质,在肿瘤治疗中显示出良好的应用前景。NMOFs自身可以作为治疗剂,也可以作为治疗剂( 药物、光热剂、光敏剂和芬顿反应催化剂等) 的纳米载体,进行肿瘤的被动靶向、物理化学靶向和主动靶向治疗。本综述重点介绍了将NMOFs用于肿瘤药物化疗( Chemotherapy,CT)、光热治疗( Photothermal therapy,PTT)、光动力治疗( Photodynamic therapy,PDT)、化学动力学治疗( Chemodynamic therapy,CDT),以及多种联合治疗的研究进展。最后阐述了目前NMOFs在肿瘤治疗中面临的挑战及其未来的发展前景。

导电金属有机框架材料的研究进展

摘要:金属有机框架材料是一类具有高比表面积的无机-有机杂化晶态材料,传统的金属有机框架材料由于其导电性较差,在电子器件领域的应用受到限制。近期研究表明,通过引入含有特定共轭结构的配体以增强其导电性等设计策略,能够成功制备出具有较高导电性的金属有机框架材料,从而拓展了其应用范围。本文系统总结了导电金属有机框架材料的设计策略、表征方法、研究进展以及其最新应用,并详细探讨了该研究领域中存在的挑战及其未来的发展方向。

有机发光晶体管的关键材料和器件研究

摘要:有机发光晶体管(organic light-emitting transistor, OLET)是一种变革性的小型化有机光电器件, 其在同一器件中集成了场效应晶体管和发光二极管的两种器件功能, 在材料的基础物性研究、新型柔性显示/照明、有机电泵浦激光以及片上集成光电子器件等方面都具有着重要的研究意义. OLET 独特的器件结构及工作模式使其对核心的关键材料和器件制备提出了新的要求, 而高性能OLET 器件的构筑需要从材料和器件两个方面同时进行优化与改善. 近五年作者课题组和合作者在全面调研和分析OLET 领域整体研究背景和存在基本科学问题基础上, 聚焦于高迁移率发光有机半导体关键材料的开发和高效OLET 器件(线光源和面光源发光模式)的构筑两个方面开展了初步的探索性研究, 发展了系列特别是基于蒽和芴的高迁移率发光/激光有机半导体材料, 构筑了高性能的单组分有机单晶OLET 器件和新型平面OLET 面光源发射显示器件, 为进一步推动OLET 及其相关领域发展奠定了重要的材料和器件研究基础.

二氧化碳化学转化的科学基础及其路径

摘要:二氧化碳(CO2)是主要的温室气体, 也是丰富的可再生资源, 通过催化转化可定向制备为化学品、能源产品与功能材料, 即实现“变废为宝、高值化利用”的资源化利用过程. 因此, 面向资源化/能源化利用的二氧化碳化学研究, 对于可持续发展具有重要意义及应用前景. 二氧化碳资源化利用的贡献不仅仅局限于减排的绝对量, 更重要的意义与价值在于: (1) 减缓化工生产对化石资源的依赖; (2) 提供更加环境友好的生产方法, 减少化工生产对环境的影响; (3) 在一定程度上调节碳循环. 我们试图从热力学、动力学角度分析CO2转化反应所涉及的CO2活化、能量问题、作用机制和催化剂的理性设计等科学基础, 并提出相应的转化途径. 本文基于CO2分子活化原理认识及转化路径分析, 介绍CO2资源化领域的现状, 分析所面临的挑战; 主要包括热催化转化及反应类型、电催化CO2还原及电羧化反应、光催化CO2还原及光驱动CO2参与的有机反应, 并简要介绍过程耦合、接力催化等策略及生物催化和耦合策略、等离子体催化技术在二氧化碳资源化中的应用. 总之, 对于二氧化碳化学的基础科学认识, 为发展二氧化碳资源化新反应、新方法与新技术提供理论支撑, 推动二氧化碳基产品的规模化生产与工业应用.

1,2-硼氮杂芳烃在中国的研究进展

摘要:稠环芳烃及其衍生物在有机光电材料领域具有广泛应用, 杂原子掺杂可有效调节稠环芳烃的物理化学性质. 用等电子体的硼氮单元取代碳碳单元, 在保持稠环芳烃芳香性的连续性的同时, 可以调节稠环芳烃的电子结构和分子间相互作用, 构建具有独特光电性质和生物活性的新型硼氮杂稠环芳烃, 既丰富了稠环芳烃的种类, 又促进了硼氮杂芳烃在光电材料、催化和生物医药等领域的应用. 近年来, 中国有机化学及材料化学领域的学者们积极参与并推动了硼氮杂芳烃的快速发展, 在硼氮杂芳烃的种类开发和应用拓展方面开展了一系列原创性的工作, 取得了瞩目的成绩. 本文综述了基于1,2-硼氮杂苯的稠环芳烃(即1,2-硼氮杂芳烃)的合成发展历史和应用研究拓展, 最后对硼氮杂芳烃领域的未来发展与应用进行了展望. 通过对硼氮芳烃在中国的发展进行系统的梳理和总结, 希望能够引起更多科研工作者对硼氮芳烃的兴趣, 期待更多的科研工作者能够加入到硼氮杂芳烃的合成拓展与应用探索中.

有机电化学晶体管分子材料与功能器件研究进展

摘要:有机电化学晶体管通过离子-电子耦合调控共轭分子的电子结构和导电能力,被认为是下一代柔性智能电子的理想载体. 本文结合电化学掺杂工作原理,总结了有机电化学晶体管分子材料在离子-电子耦合性能以及在可拉伸性、机械顺应性和生物黏性等力学特征的研究进展,并介绍了器件在互补逻辑电路、生物传感和仿生神经突触等方面的功能应用. 此外,从有机共轭分子设计、界面修饰、离子动力学调控和器件结构开发等方面入手,分析了提升器件性能和推动器件多功能化的研究策略,展示了有机电化学晶体管在智能电子方面的重要研究价值. 最后,详细探讨了有机电化学晶体管在面向传感-适应-反馈-处理的一体化智能感知器件和低成本商业化制备等方面的关键挑战与机遇.

金属有机骨架材料在金属防腐蚀领域的研究进展

摘要: 金属防腐蚀是延长金属使用寿命的关键步骤,可分为表面防护、介质处理、电化学保护等多种方式。其中表面防护和介质处理是对已合成金属进行保护处理的常规手段,其基本思路是建立金属基体与腐蚀介质之间的物理隔离。金属有机骨架 (MOFs) 材料可从缓蚀致钝、疏水、提升高分子力学性能等方面增强物理隔离性能,降低金属腐蚀速率。总结了近几年的研究成果,从MOFs材料与金属的结合方式、腐蚀防护机理、具有防腐蚀性能MOFs的特点和MOFs防腐蚀的应用环境等四个方面综述了MOFs材料在金属腐蚀防护领域的研究进展。

MOFs膜的制备技术与应用进展

摘要:金属有机骨架(MOFs)材料是一类新型的有机-无机杂化材料,具有高可调性、性能稳定的优良特性。为深入了解 MOFs膜在气体吸附、储存、药物递送和生化物质分离等生物医学及生物催化领域的应用情况,综合运用文献研究法、实例列举法和归纳总结法等方法对现有研究成果进行分析和梳理。研究发现:MOFs膜是一种较为优良的载体形式,具有分离便捷、制备简单、设计可控性好等优点;MOFs膜材料在气体分离、储存、吸附以及酶的固定化领域有着重要的应用,具备良好的应用前景,但也存在合成成本高、性能评估困难等难题。