《Science》新突破,新材料为铁电电容器增加19倍能量密度

近日,科学家们开发出了一种利用二维材料控制铁电电容器弛豫时间的新方法,从而大大提高了它们的储能能力。这一创新技术产生了一种可提高能量密度和效率的结构,有望推动大功率电子器件和可持续技术的发展。静电电容器在现代电子技术中发挥着至关重要的作用。它们能够实现超快充放电,为从智能手机、笔记本电脑和路由器到医疗设备、汽车电子设备和工业设备等各种设备提供能量存储和电源。然而,电容器中使用的铁电材料因其材料特性而具有显著的能量损耗,因此难以提供高能量存储能力。铁电电容器的创新圣路易斯华盛顿大学麦克凯尔维工程学院机械工程与材料科学助理教授Sang-Hoon Bae解决了将铁电材料用于储能应用的这一长期难题。

打破太阳能规则:新型柔性钙钛矿/硅叠层太阳能电池实现创纪录的效率

宁波研究院的研究人员取得突破,首个柔性钙钛矿/硅叠层太阳能电池,效率达到22.8%和耐久性能提高,为轻量化、高性能太阳能电池铺平了道路。(SciTechDaily.com)一项新的研究强调了柔性钙钛矿/硅叠层太阳能电池的成功开发,其效率达到创纪录的22.8%,代表了柔性太阳能电池技术的重大进步。

机器学习方法加速镁合金设计研究

近日,澳洲国立大学N. Birbilis教授和莫拉什大学M. Ghorbani博士等人对过往镁合金设计领域的数据进行了详细分析和重构,提出了一种基于数据进行合金设计的新方法。在这项工作的第一部分研究中,作者首先从文献和实验工作中提取数据,开发了一个包含916个数据点的合金数据库。通过成分-工艺-性能矩阵,分析了数据库的特征,探讨了合金化和热加工对力学性能的影响。将合金数据库与热力学稳定的析出相相关联,以进一步分析微观结构与力学性能之间的关系。机器学习模型为加速新材料开发提供了新途径,为繁琐且资源密集型的经验方法提供了虚拟替代方案。