典型结构功能一体化复合材料的设计与制备技术

摘要:在碳纤维增强树脂基复合材料轻量化与结构性能持续提高的前提下,同时附加其特定的功能,尤其是在不损失、甚至提升其层间断裂韧性的情况下,不仅可以弥补结构复合材料天然的缺陷,例如树脂基体的电绝缘性,也可以使其满足特定产品的要求,例如高刚度兼具一定的吸声降噪特性等。显然,对于航空航天这样的尖端应用领域,这种功能附加或结构功能一体化的复合材料技术对航空航天技术的未来发展至关重要。本文介绍了4种具有典型性的结构功能一体化复合材料的设计、制备与性能研究,分别是基于层间功能化插层和基于内织导电纬纱的导电增韧一体化复合材料及多级孔碳化棉纤维填充蜂窝/微穿孔面板的夹芯复合材料结构和编织布/无纺纤维毡复合材料片材折叠成型的结构吸声一体化复合材料。前两种材料分别通过在复合材料富树脂的层间插入导电功能化插层和在复合材料内引入贯通整个材料的导电纬纱网络实现了复合材料的导电性能与层间韧性的同步提高,而后两种材料则分别通过多级孔结构的碳化棉纤维材料填充蜂窝/微穿孔面板夹芯技术和编织布/无纺纤维毡复合材料片材的折叠技术实现了良好的吸声性能等,以展示多尺度、多层次结构设计和制备技术在结构复合材料功能化集成和结构功能一体化方面的应用。

生物基高阻氧复合材料研究进展

摘要:随着环保意识的提升以及国家“以纸代塑”政策的提出,研究者一直致力于研发更环保的材料以代替石油基材料。生物质资源由于来源广泛,是有望部分替代石油资源的主要可再生资源之一。本文综述了近几年一些具有高阻氧潜力生物基复合材料(纤维素、淀粉、半纤维素、壳聚糖、胶原) 的研究进展。介绍了生物基材料改性的两种常用方法(薄膜基体改性和薄膜表面改性),简要总结了氧气分子渗透的理论与机制。并对目前的一些具有潜力的生物基复合材料在食品、医学、先进功能材料等领域的应用进行简要概述,对存在的问题进行简单总结,最后展望了未来生物质基材料的发展方向与趋势。

聚合物基吸波导热复合材料的研究进展

摘要:针对5G或6G通信设备、超级计算机、无线能量传输装置、AI智能、量子储存、VR技术和微波医疗器等精密电子设备朝着小型化和高度集成化发展所带来的电磁兼容和散热两大问题,研制兼具良好的绝缘性、缓震性、高效吸波性能以及优良导热能力的柔性吸波导热复合材料非常必要。本文从单一的电磁波吸收功能复合材料和散热性能复合材料的设计制备出发,归纳了电磁波吸波机制与导热机制以及影响吸波和导热性能的重要因素。在此基础上介绍了一些国内外聚合物基吸波导热复合材料的综合性能及其设计制备方法,在总结现有吸波导热多功能复合材料的研究现状和存在问题的基础上,考虑当前设计研发中存在的不足,提出了对于未来聚合物基吸波导热材料的发展方向的思考。此文旨在为制备高性能吸波导热复合材料材料提供思路,提升行业技术水平,开发出兼具高导热和优异电磁波吸收能力的新型复合材料。

静电纺丝技术制备聚合物基MXene增强电磁屏蔽复合材料研究进展

摘要:随着电子信息技术的发展, 电磁波污染已经严重影响了人类健康和社会进步, 因此急需开发出一种高效的电磁干扰(electromagnetic interference, EMI)屏蔽材料. 静电纺丝技术可以制备出柔韧性好的超薄多孔纤维膜, 电磁波能够在纤维膜内部进行多次反射而被消耗. MXene作为一种新型的二维(2D)材料群体, 具有高比表面积、高导电性以及易加工性, 是一种潜在的EMI屏蔽材料. 因此, 将静电纺丝技术和MXene材料相结合, 能够制备出多功能的聚合物基MXene增强电磁屏蔽复合材料. 本文首先介绍了静电纺丝技术的概念、原理及其影响因素, 其次,分析了MXene材料的组成和制备方法, 最后, 讨论了静电纺丝技术制备聚合物基MXene增强电磁屏蔽复合材料的最新进展并对未来聚合物基MXene增强静电纺丝复合材料在电磁屏蔽领域的发展做出展望.

多孔石墨烯/SiC基复合材料的直写3D打印制备

摘要:以石墨烯和SiC粉末(SiCpowder,SiCp)为填料,聚碳硅烷(polycarbosilane, PCS)为陶瓷前驱体,制备石墨烯/SiCp/PCS 浆料,通过直写 3D打印和高温热解得到多孔结构的轻质导电石墨烯/SiC基复合材料。研究浆料成分和打印工艺对3D打印成形性的影响,并表征复合材料的结构和性能。结果表明:通过控制固相含量、石墨烯/SiCp复合粉末中的石墨烯含量和分散剂含量,使浆料黏度在32.0 Pa·s左右时,挤出丝成形性良好;打印速度为360 mm/min、打印层高为0.48 mm 时,点阵网格结构的3D打印成形性最佳;打印素坯在1 100 ℃保温2 h后,PCS热解为陶瓷。多孔复合材料的平均抗压强度和电导率分别为11MPa和8 S/m。本研究为多孔石墨烯/SiC基复合材料的制备提供了一条新路径。

连续纤维增强陶瓷基复合材料3D打印:研究进展与挑战

摘要:连续纤维增强陶瓷基复合材料(continuous fiber reinforced ceramic matrix composites, CFRCMCs)具有低密度、高强度、优异的高温稳定性与化学稳定性等性能,在航空航天、核工业、化工以及交通运输等领域都有着重要应用。近几年,3D打印技术的发展为复杂异形 CFRCMCs构件的预制体成形提供了创新途径。然而CFRCMCs 的3D打印技术仍处于起步阶段,面临着成形设备、成形工艺和成形原理等方面的重大挑战。因此,对 CFRCMCs的3D打印研究进展与挑战进行归纳与分析具有重要意义。本文首先对常见3D打印技术进行简单介绍;其次,总结 CFRCMCs的3D打印研究进展,具体包括基于热塑性原料的熔融沉积3D 打印、基于水系浆料的墨水直写3D打印、机械辅助的墨水直写3D打印、基于光敏浆料的光固化3D打印等;最后,从纤维与陶瓷界面、缺陷表征与控制、陶瓷化与致密化、自动化与智能化制造、结构功能一体化、4D打印、自修复以及标准等方面对CFRCMCs的3D打印挑战进行分析。期望为CFRCMCs 3D打印相关的基础科学与关键技术研究提供一定参考与指导。

增强体表面改性在高导热金属基复合材料中的应用

摘要:随着电子技术的高速发展和电子器件的更新换代,电子封装材料的性能需求越来越高。金属基复合材料,尤其是铝基和铜基复合材料具有高导热、低膨胀、高稳定性等特点,是具有广阔应用前景的电子封装材料。然而,金刚石、石墨烯、硅等增强体与基体的润湿性差,或者在高温下与基体发生有害的界面反应,限制了此类高导热金属基复合材料的开发和应用。本文简述了金属基复合材料的界面研究进展,结合影响金属基复合材料界面结合的因素,提出了几种改善界面结合的方法。增强体表面改性是改善金属基复合材料界面的重要途径之一,常用工艺有磁控溅射法、化学气相沉积法、溶胶凝胶法、化学镀法等;最后,对增强体表面改性在高热导金属基复合材料中的应用进行分析和展望。

镓基低熔点合金复合材料研究进展

摘要:近年来,镓基低熔点合金或镓基液态金属复合材料显示出非常广阔的应用前景,镓基低熔点合金在室温下兼具液体的流动性和金属性,其双重特性提供了复合材料的多样性。本文综述了镓基低熔点合金及其复合材料的发展背景,说明了其复合材料的制备、性能及应用,总结和讨论了镓基低熔点合金复合材料与金属或非金属材料复合的方法和机理,介绍了室温镓基液态金属复合材料在智能传感电子皮肤、印刷技术和热界面材料等多个领域的最新研究进展。最后,展望了镓基低熔点合金复合材料的未来发展,为其进一步研究、应用与发展提供了强有力的支持。

原位合成颗粒增强铜基复合材料的研究进展

摘要:弥散强化型铜基复合材料,兼具优异的导电导热性能、高强度、良好的热稳定性和耐磨性,是核反应堆、航空器及高端装备中各种导电导热元件的关键材料,在核电、航空、交通、军事等诸多重要领域有不可替代的作用。原位合成法是在一定温度下金属基体内发生化学反应,原位生成一种或几种陶瓷增强体的技术。原位反应制备颗粒增强铜基复合材料存在两个重要的问题亟待解决:一是增强相的团聚问题,二是增强相的尺寸调控问题。本文总结了几种较为常用的制备弥散强化型铜基复合材料的原位合成方法,并对比分析了几种方法的特点、优劣及技术难点。同时,本文综述了原位合成法对铜基复合材料中颗粒尺寸和分布的影响,分析了原位合成法不同参数对复合材料力学及综合性能的影响规律,并从增强相颗粒形核与生长的原理出发,提出了促成细小弥散颗粒增强相的工艺方案。

Al-Ag功能梯度复合材料的制备及其性能研究

摘要: 准等熵压缩实验可以通过轻气炮驱动不同阻抗分布的弹丸材料实现。弹丸的阻抗分布决定了加载的应力-应变率范围。采用粉末铺层结合热压烧结工艺制备了阻抗连续变化的Al-Ag梯度复合材料,并对单层Al-Ag复合材料以及Al-Ag梯度复合材料的结构与性能进行了研究。结果表明,Al-Ag梯度复合材料的最佳烧结工艺为570℃-100MPa-2h,各组分的Al-Ag复合材料致密度均大于95%。除此之外,各组分的Al-Ag复合材料的力学性能、SEM、热膨胀系数结果均表明Al-Ag梯度复合材料的可行性。Al-Ag梯度复合材料的SEM 和EDS结果表明梯度复合材料内部元素分布与设计方案一致,层间平行度较好。动态加载实验结果显示Al-Ag梯度复合材料具有良好的准等熵加载效果,有明显的准等熵加载效果,与模拟结果吻合较好。制备的Al-Ag梯度复合材料具有稳定的准等熵压缩效果,为探究不同应力-应变率下的材料的高压物性参数及损伤机制提供了支撑。