机器学习在复合材料领域中的应用进展

摘要:复合材料因其密度低、比模量高、比强度高等优势成为汽车轻量化的重要材料。但因复合材料所涉及材料参数相对庞杂,成本高、周期长的传统复合材料研究方法已无法适应目前复合材料的发展趋势。近年来,基于数据挖掘的机器学习具有高效、高精等优势,为解决上述复合材料领域现存困境提供了新思路。通过阐述机器学习技术的基本原理、应用流程以及典型算法,总结其在复合材料领域的应用可行性。分析了机器学习在复合材料的微观结构表征、力学性能预测、复合材料优化设计、加工制造模拟速度四个方面的研究进展。分析表明,机器学习可用于复合材料研究领域,且具有较高的预测精度和可靠性。最后分析了机器学习在该领域的问题与挑战,为其未来研究方向和发展提出展望。

连续纤维增强复合材料的3D打印工艺及应用进展

摘要:连续纤维增强复合材料因其优异的力学性能、灵活的设计性以及耐腐蚀、抗疲劳等一系列优点而广泛应用于航空航天、汽车制造、智能材料等各个领域. 传统的连续纤维增强复合材料制造工艺因生产成本较高和工艺的复杂性而限制了其在复杂结构中的应用, 3D打印技术的日益成熟为制造轻质复杂一体化的连续纤维增强结构提供了可能. 本文首先介绍了连续纤维增强复合材料的打印原料和打印方法, 并总结了不同工艺对打印过程和结果的影响, 其次分析了其在不同领域的应用前景, 最后讨论了当下存在的研究问题并对未来连续纤维增强复合材料3D打印的发展做出了展望.

三维编织复合材料冲击损伤分布的温度和结构效应

摘要:三维编织复合材料是通过纤维束编织和基体成型制备得到的复合材料, 能以“近净成型”的方式实现材料结构一体化制造复杂外形结构件, 减少装配连接数量. 该材料已经在航空航天、高速车辆和重要民用设施中得到广泛应用. 我们采用高速摄影记录冲击变形过程, 用计算机断层扫描(CT)技术和有限元方法表征三维编织碳纤维/环氧树脂复合材料在多次冲击加载下的内部损伤分布与环境温度、细观结构间的关系. 研究发现, 温度增加,树脂由脆性失效变为韧性失效, 界面黏结强度降低, 失效模式变为纤维/树脂界面开裂和树脂脱黏; 编织角增加,失效模式由界面开裂转变为树脂脱黏开裂和界面开裂同时发生, 抗冲击容限提高, 吸收能量增加导致局部温升提高; 冲击次数增加, 冲击损伤的积累导致增强体变形、界面开裂和树脂脱黏有明显的累加效应.

高熵合金复合涂层研究现状及展望

摘要:高熵合金涂层能在经济实用的基础上发挥高熵合金的优良综合性能,但其强化方式主要为固溶强化,强化效果有很大局限性,因此有必要在高熵合金涂层中引入硬质颗粒实现复合增强,从而得到性能更加优良的高熵合金复合涂层。综述了制备高熵合金复合涂层的主要技术,如激光熔覆技术、等离子熔覆技术和氩弧熔覆技术,重点介绍了直接添加和原位合成硬质颗粒增强高熵合金复合涂层的研究现状,分析了其组织与结构,并分别从硬度、耐磨性、耐腐蚀性和抗高温氧化性这几个方面论述了硬质颗粒对高熵合金复合涂层性能的影响,最后针对高熵合金复合涂层研究中存在的问题进行了总结和展望。

钛基复合材料加工技术研究进展

摘要:从传统机械加工、复合能场加工、锻造加工以及增材制造等方面综述了钛基复合材料(TiMMCs)的加工技术研究现状与进展,重点阐述了不同加工技术下TiMMCs的加工机理,并总结了不同加工工艺加工TiMMCs的特点。针对当前研究存在的主要问题,对未来TiMMCs加工技术的发展趋势进行了展望。

金属复合板加工技术的研究现状及发展趋势

摘要:在全球工业和经济飞速发展的时代背景下,单一组元的金属材料越来越难满足严苛的使用环境。于是科研工作者研究出一种将2种或2种以上的金属材料组合到一起,制成金属复合板再加工成设备的方法,使其能够在高温重载、强酸强碱等极端工况条件下使用。金属复合板兼具基板和复板两种材料的性能,降低了稀贵金属使用量,在石油化工、海洋船舶、电力环保等领域得到了广泛应用。本文介绍了目前金属复合板加工领域主流的3种复合工艺的研究现状和发展趋势,并分析了它们的优缺点。最后作者指出随着研究的不断深入,实现多种、多层先进功能结构一体化材料的有效组合,是金属复合板加工技术未来发展的重点方向。

钛基复合材料板材轧制研究进展

摘要: 钛基复合材料中的增强相极大增加了其热加工难度,导致大变形或大尺寸高性能钛基复合材料板材的制备困难。从钛基复合材料板材发展现状出发,围绕其热轧制技术,分析了轧制温度、变形量及轧后热处理工艺对板材微观组织演变和力学性能的影响规律,重点分析了轧制过程和热处理过程增强相与基体组织之间的相互作用。最后指出当前钛基复合材料板材轧制研究存在的不足及未来的发展趋势。

碳化硅纳米线增强钛基复合材料的制备与性能研究

摘要: 采用球磨法将Ti60合金粉末与碳化硅纳米线(SiCnw)混合,通过放电等离子活化烧结工艺制备SiCnw/Ti60复合材料。利用扫描电子显微镜、X射线衍射仪和万能力学试验机研究复合材料的组织形貌、物相结构和力学性能。结果表明,在Ti60合金中添加SiCnw后,基体晶粒尺寸显著减小,当SiCnw添加量为0.1% (质量分数) 时,SiCnw/Ti60复合材料的晶粒尺寸较Ti60 合金下降42%,抗拉强度提高2.7%,为1037MPa。SiCnw在晶界处的均匀分布可起到钉扎效应,在拉伸过程中SiCnw承担了基体间的载荷传递,从而提高了SiCnw/Ti60复合材料的拉伸强度。

氮化碳基复合材料的研究进展

摘要:石墨相氮化碳(graphitic phase carbon nitride, g-C3N4)作为一种无金属半导体,被广泛认为是清洁、绿色、可持续能源生产和转化有希望的候选者。近年来,g-C3N4 以其合适的带隙(约2.7 eV)、低成本、易制备、无毒、高度稳定和环保等优异性能备受人们关注。这一前景也反映了g-C3N4 纳米结构优异的光物理和化学特性,特别是高表面积、高量子效率、高效界面电荷分离和传输,以及易于形成复合材料或结合表面官能团等。综述了g-C3N4 纳米结构材料的合成、改性策略及光催化应用的最新研究进展。最后,总结了g-C3N4 基光催化剂在生产和应用中面临的挑战,并对g-C3N4 基光催化剂的发展前景进行了展望。

环保型氧化物增强银基电接触功能复合材料研究进展

摘要:围绕研制开发具有与AgCdO性能相媲美的银基电接触材料,报道了近3 年来传统Ag/SnO2、Ag/ZnO、Ag/CuO三种银基电接触材料体系的研究现状,主要论述国内外研究学者从掺杂改性、制备方法、材料模拟仿真、第一性原理计算等方面开展的大量优化研究;梳理了目前制备银基电接触材料体系的常规制备技术及其工作原理;简述了当前部分学者研制开发的诸如Zn2SnO4、LaSrCuO4、Ti2AlN、La2Sn2O7等新型增强相改性银基电接触材料体系;论述了关于材料模拟仿真、第一性原理等理论计算在电接触材料中的应用现状,这些理论计算为银基电接触材料的成分-结构-性能的优化设计提供了相应的指导意义,有助于缩短材料筛选与研发周期。采用新型表征技术检测Ag/CdO等电接触材料的本质特性,为新材料体系研发推导出最本质的设计判据,而关于电弧能量场作用下银基电接触材料的表面熔池特性、熔池内部冶金反应行为及其电寿命失效机制有待深入探究。