颗粒增强钛基复合材料构型化复合研究进展

摘要:近年来以空天飞行器为代表的国家重大战略装备蓬勃发展,对轻质、高强钛基复合材料(TMCs)的需求呈高速增长趋势,并促使其向高性能化方向发展。在复合化的基础上“师法自然”,对组织进行构型化设计是提高钛基复合材料综合性能的有效途径。构型化组织中软硬相间的变形协调作用与异质变形诱导的强化和应变硬化效应能够显著提升材料的加工硬化能力,并获得理想的强塑性协同效果。本文围绕材料研制的各个环节,从基元复合技术、构型化复合工艺途径、组织特征与力学性能等方面综述了钛基复合材料构型化复合的研究现状,深入讨论了构型化组织的共性特征与强韧化机理,总结了目前研究存在的问题与技术难点,并指出钛基复合材料构型化复合的未来发展方向。

增材制造钛基复合材料体系与组织结构设计

摘要:增材制造技术作为一种样件快速成型制备技术,为基于成分调控与结构设计的高性能钛基复合材料的开发带来了机遇。本文介绍了增材制造钛基复合材料研究与应用的最新进展,分析了能量密度、打印路径及冷速控制等对材料显微组织与力学性能的影响。在此基础上,介绍了以陶瓷、金属间化合物及稀土元素为主的增材制造钛基复合材料成分调控策略。其中,以TiB、TiC 为代表的陶瓷增强相及Ti-Cu 体系的金属间化合物为目前钛基复合材料中广泛使用的增强体;以La、Ce 和Nd 为主的稀土元素则可有效解决氧偏聚问题并显著细化晶粒。进而以网状结构和层状结构为例介绍了增材制造钛基复合材料结构设计研究进展。其中,网状结构多通过Ti 与B 和C 元素的原位反应生成增强相,并通过控制凝固过程实现对增强相非均匀分布的调控;层状结构则多通过交替打印多种粉体获得。网状、层状结构设计对钛基复合材料强韧化有着积极的作用。本文最后通过对研究现状和未来研究趋势的简要分析与展望,为增材制造高性能钛基复合材料的设计与制备提供一定参考。

可加工氮化硼系复相陶瓷的研究发展现状和发展趋势以及应用现状分析

摘要:先进陶瓷材料具有较高的力学性能.以及较高的抗高温氧化性能等。但是先进陶瓷材料由于硬度较高、可加工性能较差,导致陶瓷材料的机械加工成本较高,所以限制了陶瓷材料的广泛应用。为了改善和提高陶瓷材料的可加工性能,向陶瓷基体中加入六方氮化硼形成可加工氮化硼系复相陶瓷。可加工氮化棚系复相陶资具有较高的力学性能和优良的可加工性能,氮化棚系复相陶瓷可以进行机械加工。目前研究和开发的可加工氣化棚系复相陶瓷主要包括:Al2O3/BN复相陶瓷,ZrO2/BN复相陶瓷,SiC/BN复相陶瓷,Si3N4/BN复相陶瓷,A1N/BN复相陶瓷等。目前可加工氮化硼系复相陶瓷的研究主要集中在氮化硼系复相陶瓷的制备工艺,力学性能,可加工性能,抗热震性能,抗高温氧化性能等。本文主要叙述可加工氮化硼系复相陶瓷的制备工艺,力学性能和可加工性能,抗热震性能,抗高温氧化性能等。并叙述可加工氮化硼系复相陶瓷的研究发展现状和发展趋势,并对可加工氮化硼系复相陶瓷的未来发展趋势进行分析和预测。

纺织复合材料多尺度网格划分方法

摘要:针对现有纺织复合材料网格划分时,由不规则纱线截面形状和材料边界引起的失真、干涉和锐化等问题,提出了一种基于织物微观几何结构的复合材料网格划分方法和单元拆分机制。该方法借助专业纺织建模软件DFMA 建立织物单胞几何结构点云。首先,基于结构点云,计算纱线路径并采用Delaunay 三角网改进的Alpha-shape 算法计算纱线截面轮廓,依此获得纱线表面初始网格。然后,将该网格置于体素网格中,通过网格映射方法引入周期性边界,并与体素网格节点相匹配,进而消除纱线间的渗透和窄间隙。最后,拆分体素单元,以保证材料的连续性。采用该方法建立了平纹、三维整体正交和层间正交复合材料网格模型,并基于应变连续损伤准则与指数衰减模型建立了纺织复合材料的损伤起始与演化准则,模拟了平纹编织复合材料在剪切载荷作用下的力学性能。结果表明,与四面体和六面体网格划分方法相比,所提网格划分方法能够较为准确地还原复合材料内部几何结构,处理二维和三维机织物结构中的尖锐边界和复杂曲面,获得光滑的纱线表面和清晰的轮廓;网格数量适中,计算耗时仅为TexGen 模型的15%。剪切模量和强度的仿真结果与实验结果对比分别相差8. 93% 和3. 73%,验证了模型的有效性与可靠性。

导热复合材料降低填料之间界面热阻研究进展

摘要:复合材料热导率增强的低效率源于其内部存在界面热阻——填料与树脂基体之间的界面热阻及填料之间的界面热阻。目前大多数研究都集中于降低填料与树脂基体之间的界面热阻,而高填充量下填料之间的界面热阻才是影响复合材料热导率的关键因素。文中从增加填料之间的接触面积和提高填料之间的键接强度两方面综述了近年来降低填料之间界面热阻的研究进展,为高导热复合材料的设计和制备提供参考。

轻量化复合材料与3D打印技术在服务机器人上的应用与展望

摘要:作为人类劳动力的替代品,服务机器人的应用方兴未艾。本文介绍了服务机器人的应用特点和应用场景,加强机器人的运动性和自主性方面仍是重要的研究方向,而发展机器人的轻量化可以增加机器人的灵活性和工作效率,并提高操作的速度和精度。通过轻量化材料的选择和结构优化设计可以实现机器人的轻量化。本文详细介绍了轻量化复合材料的概念和3D打印技术的概念,将这两种应用结合起来,特别是碳纤维复合材料的3D打印应用于服务机器人上,可以实现服务机器人的轻量化,降低机电系统的能耗,缩短开发周期。

碳纤维复合材料缠绕气瓶优化研究进展

摘要:碳纤维复合材料缠绕气瓶具有质量轻、刚性好、强度高、寿命长、安全性高等优势,自问世以来就受到各行各业的青睐。 文中总结归纳了碳纤维复合材料缠绕气瓶国内外优化研究的进展,具体从自紧压力优化,质量优化,材料与结构优化三个方面 进行了阐述

铁基复合吸波材料的研究进展

摘要:微波吸收材料的研究和应用对于减少电磁污染和实现军事装备隐身具有重要意义。其中,铁磁吸波材料具有优越的磁性能、较高的Snoek截止频率、饱和磁化强度和居里温度,表现出优异的电磁波损耗能力,是一种很有前景的吸波材料。然而,铁磁颗粒具有阻抗匹配差、易氧化、密度高、趋肤效应强、温度稳定性差等缺点,通过微观形貌调控等方式与碳基材料、导电金属、导电聚合物、半导体等材料复配,可以有效改善铁磁吸波材料的性能。本文总结了几种铁基复合材料的制备方法、性能和作用机制等,并展望了未来的研究方向。

有机无机转化法制备超高温陶瓷基复合材料技术研究

摘要:超高温陶瓷基复合材料是以连续碳纤维为增强体、超高温陶瓷为基体的一类复合材料,具有密度低、韧性好、耐高温、抗氧化及耐烧蚀等优异性能,在新型高速飞行器热结构应用方面有着不可替代的作用。碳纤维增强体和陶瓷基体是超高温陶瓷基复合材料的两个重要组成部分,对复合材料使役性能起着决定性作用,但是,碳纤维与陶瓷基体的理化性质差异大,如何将碳纤维与陶瓷基体进行有效复合,以便充分发挥碳纤维轻质、高强韧特性与陶瓷基体抗氧化、耐烧蚀特性,是超高温陶瓷基复合材料基础研究和工程应用需要解决的主要问题。本文论述了有机无机转化法制备超高温陶瓷基复合材料技术的发展思路,介绍了超高温有机陶瓷前驱体的设计与合成、C/ZrC-SiC和C/HfTaC-ZrC-SiC复合材料的研究结果,探讨了解决新型高速飞行器高温气动/燃气环境氧化烧蚀问题的材料技术方案,为连续纤维增强超高温陶瓷基复合材料的技术发展和工程应用提供借鉴。

超高导电性石墨烯铜复合材料研究进展

摘要:超高导电铜具体是指常温下电导率高于100%IACS的铜基复合材料。在铜基复合材料中增强体的选择会对复合材料的电导率产生重大影响。近年来,随着对碳纳米管和石墨烯的进一步研究,具有良好本征特性的碳纳米材料逐渐成为了当下研究的热门。对于铜基复合材料而言,纳米碳具有作为增强体的巨大潜力,成为主要研究开发的材料,近年来随着科技社会的快速发展,许多新兴领域,如航空航天、精细金属部件、传感器等,对材料的导电性能提出更高的要求,对超高导电铜的需求也日益迫切。综述了超高导电铜的发展现状,包括应用材料体系、增益机制、研究现状以及未来应用前景。