高导热石墨烯复合材料研究进展

摘要: 电子器件、智能穿戴设备,以及处于高速发展期的新能源汽车都在朝着轻量化、高功率的方向发展,而散热问题已成为制约微电子和新能源行业发展的瓶颈性难题。石墨烯复合材料在热管理材料领域得到了广泛的关注与研究。综述了当前石墨烯导热复合材料的导热模型、三维石墨烯导热网络的构筑方法、石墨烯表面改性和石墨烯导热复合材料的制备方法。

聚合物基吸波导热复合材料的研究进展

摘要:针对5G或6G通信设备、超级计算机、无线能量传输装置、AI智能、量子储存、VR技术和微波医疗器等精密电子设备朝着小型化和高度集成化发展所带来的电磁兼容和散热两大问题,研制兼具良好的绝缘性、缓震性、高效吸波性能以及优良导热能力的柔性吸波导热复合材料非常必要。本文从单一的电磁波吸收功能复合材料和散热性能复合材料的设计制备出发,归纳了电磁波吸波机制与导热机制以及影响吸波和导热性能的重要因素。在此基础上介绍了一些国内外聚合物基吸波导热复合材料的综合性能及其设计制备方法,在总结现有吸波导热多功能复合材料的研究现状和存在问题的基础上,考虑当前设计研发中存在的不足,提出了对于未来聚合物基吸波导热材料的发展方向的思考。此文旨在为制备高性能吸波导热复合材料材料提供思路,提升行业技术水平,开发出兼具高导热和优异电磁波吸收能力的新型复合材料。

增强体表面改性在高导热金属基复合材料中的应用

摘要:随着电子技术的高速发展和电子器件的更新换代,电子封装材料的性能需求越来越高。金属基复合材料,尤其是铝基和铜基复合材料具有高导热、低膨胀、高稳定性等特点,是具有广阔应用前景的电子封装材料。然而,金刚石、石墨烯、硅等增强体与基体的润湿性差,或者在高温下与基体发生有害的界面反应,限制了此类高导热金属基复合材料的开发和应用。本文简述了金属基复合材料的界面研究进展,结合影响金属基复合材料界面结合的因素,提出了几种改善界面结合的方法。增强体表面改性是改善金属基复合材料界面的重要途径之一,常用工艺有磁控溅射法、化学气相沉积法、溶胶凝胶法、化学镀法等;最后,对增强体表面改性在高热导金属基复合材料中的应用进行分析和展望。

碳纤维复合材料/钛合金叠层结构振动制孔技术研究进展

摘要:碳纤维增强树脂基复合材料(CFRP)和钛合金(Ti6Al4V)以其卓越的高比强度、高比刚度、优异的耐腐蚀性和抗热冲击能力在航空领域广受青睐。然而在复/钛叠层结构制孔过程中,两种材料的显著力学性能差异常导致加工质量不佳和刀具磨损加剧。本文综述了国内外学者在切削参数、先进刀具设计和切削环境方面现阶段的研究进展;总结近年来振动制孔作为先进加工模式在复/钛叠层结构制孔中取得了卓有成效的工艺效果,详细分析了复/钛叠层结构超声、低频振动制孔中切削力、切削热、制孔质量和刀具磨损等关键技术问题;概述了新型精强一体波动超声制孔技术;最后展望了振动制孔技术对叠层结构制孔技术的进一步推动。

碳纳米材料增强镁基复合材料界面调控的研究进展

摘要:碳纳米材料(石墨烯、碳纳米管)具有卓越的机械性能、优异的热力学稳定性和导电性,被认为是金属基复合材料的理想增强体。将碳纳米材料与镁合金复合,能够解决镁合金强度低、硬度低和模量低等问题。然而,由于镁与碳纳米材料不发生化学反应且润湿性能差,导致镁与碳纳米材料增强体的界面强度低,限制了增强体性能的发挥。利用界面调控物质改善复合材料界面结合强度是一种常用的方法。本文主要介绍碳纳米材料增强镁基复合材料的制备方法及界面调节材料的种类,着重讨论界面调节物质添加到复合材料中的方法,界面调节物质分别与增强体和基体的界面结合情况及其改善复合材料界面结合强度的作用机理。

氮化硼颗粒增强铝基复合材料研究进展

摘要:铝基复合材料作为一种轻质高强度材料具有广泛的应用前景。本文综述了当前氮化硼纳米颗粒增强铝基复合材料的研究进展,通过液相法和固相法的分类详细介绍了搅拌铸造、超声辅助铸造、选择性激光熔化(SLM)、热挤压等制备氮化硼纳米颗粒增强铝基复合材料的方法,总结了所制备复合材料的力学性能和功能特性。最后指出了不同制备方法存在的问题,并且对氮化硼纳米颗粒增强铝基复合材料的未来进行了展望。

颗粒增强钛基复合材料构型化复合研究进展

摘要:近年来以空天飞行器为代表的国家重大战略装备蓬勃发展,对轻质、高强钛基复合材料(TMCs)的需求呈高速增长趋势,并促使其向高性能化方向发展。在复合化的基础上“师法自然”,对组织进行构型化设计是提高钛基复合材料综合性能的有效途径。构型化组织中软硬相间的变形协调作用与异质变形诱导的强化和应变硬化效应能够显著提升材料的加工硬化能力,并获得理想的强塑性协同效果。本文围绕材料研制的各个环节,从基元复合技术、构型化复合工艺途径、组织特征与力学性能等方面综述了钛基复合材料构型化复合的研究现状,深入讨论了构型化组织的共性特征与强韧化机理,总结了目前研究存在的问题与技术难点,并指出钛基复合材料构型化复合的未来发展方向。

增材制造钛基复合材料体系与组织结构设计

摘要:增材制造技术作为一种样件快速成型制备技术,为基于成分调控与结构设计的高性能钛基复合材料的开发带来了机遇。本文介绍了增材制造钛基复合材料研究与应用的最新进展,分析了能量密度、打印路径及冷速控制等对材料显微组织与力学性能的影响。在此基础上,介绍了以陶瓷、金属间化合物及稀土元素为主的增材制造钛基复合材料成分调控策略。其中,以TiB、TiC 为代表的陶瓷增强相及Ti-Cu 体系的金属间化合物为目前钛基复合材料中广泛使用的增强体;以La、Ce 和Nd 为主的稀土元素则可有效解决氧偏聚问题并显著细化晶粒。进而以网状结构和层状结构为例介绍了增材制造钛基复合材料结构设计研究进展。其中,网状结构多通过Ti 与B 和C 元素的原位反应生成增强相,并通过控制凝固过程实现对增强相非均匀分布的调控;层状结构则多通过交替打印多种粉体获得。网状、层状结构设计对钛基复合材料强韧化有着积极的作用。本文最后通过对研究现状和未来研究趋势的简要分析与展望,为增材制造高性能钛基复合材料的设计与制备提供一定参考。

可加工氮化硼系复相陶瓷的研究发展现状和发展趋势以及应用现状分析

摘要:先进陶瓷材料具有较高的力学性能.以及较高的抗高温氧化性能等。但是先进陶瓷材料由于硬度较高、可加工性能较差,导致陶瓷材料的机械加工成本较高,所以限制了陶瓷材料的广泛应用。为了改善和提高陶瓷材料的可加工性能,向陶瓷基体中加入六方氮化硼形成可加工氮化硼系复相陶瓷。可加工氮化棚系复相陶资具有较高的力学性能和优良的可加工性能,氮化棚系复相陶瓷可以进行机械加工。目前研究和开发的可加工氣化棚系复相陶瓷主要包括:Al2O3/BN复相陶瓷,ZrO2/BN复相陶瓷,SiC/BN复相陶瓷,Si3N4/BN复相陶瓷,A1N/BN复相陶瓷等。目前可加工氮化硼系复相陶瓷的研究主要集中在氮化硼系复相陶瓷的制备工艺,力学性能,可加工性能,抗热震性能,抗高温氧化性能等。本文主要叙述可加工氮化硼系复相陶瓷的制备工艺,力学性能和可加工性能,抗热震性能,抗高温氧化性能等。并叙述可加工氮化硼系复相陶瓷的研究发展现状和发展趋势,并对可加工氮化硼系复相陶瓷的未来发展趋势进行分析和预测。

纺织复合材料多尺度网格划分方法

摘要:针对现有纺织复合材料网格划分时,由不规则纱线截面形状和材料边界引起的失真、干涉和锐化等问题,提出了一种基于织物微观几何结构的复合材料网格划分方法和单元拆分机制。该方法借助专业纺织建模软件DFMA 建立织物单胞几何结构点云。首先,基于结构点云,计算纱线路径并采用Delaunay 三角网改进的Alpha-shape 算法计算纱线截面轮廓,依此获得纱线表面初始网格。然后,将该网格置于体素网格中,通过网格映射方法引入周期性边界,并与体素网格节点相匹配,进而消除纱线间的渗透和窄间隙。最后,拆分体素单元,以保证材料的连续性。采用该方法建立了平纹、三维整体正交和层间正交复合材料网格模型,并基于应变连续损伤准则与指数衰减模型建立了纺织复合材料的损伤起始与演化准则,模拟了平纹编织复合材料在剪切载荷作用下的力学性能。结果表明,与四面体和六面体网格划分方法相比,所提网格划分方法能够较为准确地还原复合材料内部几何结构,处理二维和三维机织物结构中的尖锐边界和复杂曲面,获得光滑的纱线表面和清晰的轮廓;网格数量适中,计算耗时仅为TexGen 模型的15%。剪切模量和强度的仿真结果与实验结果对比分别相差8. 93% 和3. 73%,验证了模型的有效性与可靠性。