Al-Ag功能梯度复合材料的制备及其性能研究

摘要: 准等熵压缩实验可以通过轻气炮驱动不同阻抗分布的弹丸材料实现。弹丸的阻抗分布决定了加载的应力-应变率范围。采用粉末铺层结合热压烧结工艺制备了阻抗连续变化的Al-Ag梯度复合材料,并对单层Al-Ag复合材料以及Al-Ag梯度复合材料的结构与性能进行了研究。结果表明,Al-Ag梯度复合材料的最佳烧结工艺为570℃-100MPa-2h,各组分的Al-Ag复合材料致密度均大于95%。除此之外,各组分的Al-Ag复合材料的力学性能、SEM、热膨胀系数结果均表明Al-Ag梯度复合材料的可行性。Al-Ag梯度复合材料的SEM 和EDS结果表明梯度复合材料内部元素分布与设计方案一致,层间平行度较好。动态加载实验结果显示Al-Ag梯度复合材料具有良好的准等熵加载效果,有明显的准等熵加载效果,与模拟结果吻合较好。制备的Al-Ag梯度复合材料具有稳定的准等熵压缩效果,为探究不同应力-应变率下的材料的高压物性参数及损伤机制提供了支撑。

高体积分数SiC增强铜基复合材料的制备与性能研究

摘要: 随着现代工业的快速发展,SiC/Cu复合材料以其优异的导电性、高强度、导热性等在电子封装领域有着巨大的应用前景。通过化学镀与粉末冶金法成功制备了高体积分数β-SiC@ Cu/Cu复合材料,并通过金相显微镜、XRD、SEM等分析手段对其物相、微观组织和热膨胀系数进行了表征。结果表明: 随着SiC体积含量的增加,β-SiC@ Cu/Cu复合材料的致密度、抗弯强度均减小,而复合材料的硬度随之增大;β-SiC@ Cu/Cu 复合材料的抗弯强度达在70MPa以上,热膨胀系数为4.5×10-6~10.0×10-6/℃,满足现代电子封装材料性能要求。

超疏水涂层的制备、性能及应用研究进展

摘要 :随着材料工程和涂料工业的发展,具有耐腐蚀、自清洁、防雾、减阻或抗结冰等性能的超疏水涂层由于能够满足不同应用领域的功能需求,越来越受到研究人员的关注。此外,通过进一步在涂层内部引入隔热、防冰、阻燃、防腐等功能填料可赋予其多功能性,极大地拓宽了超疏水涂层的应用领域。本文首先对超疏水涂层的原理进行了梳理;进一步阐述了超疏水涂层的经典润湿理论,包括杨氏模型、Wenzel 模型和Cassie-Baxter 模型;随后分析了超疏水涂层不同制备方法的特点,并对各方法的优缺点进行了对比;最后通过介绍掺杂功能填料的多功能超疏水涂层研究进展,指出超疏水涂层存在的主要问题,并对其发展方向进行了展望。

连续纤维增强复合材料的3D打印工艺及应用进展

摘要:连续纤维增强复合材料因其优异的力学性能、灵活的设计性以及耐腐蚀、抗疲劳等一系列优点而广泛应用于航空航天、汽车制造、智能材料等各个领域. 传统的连续纤维增强复合材料制造工艺因生产成本较高和工艺的复杂性而限制了其在复杂结构中的应用, 3D打印技术的日益成熟为制造轻质复杂一体化的连续纤维增强结构提供了可能. 本文首先介绍了连续纤维增强复合材料的打印原料和打印方法, 并总结了不同工艺对打印过程和结果的影响, 其次分析了其在不同领域的应用前景, 最后讨论了当下存在的研究问题并对未来连续纤维增强复合材料3D打印的发展做出了展望.

原位合成颗粒增强铜基复合材料的研究进展

摘要:弥散强化型铜基复合材料,兼具优异的导电导热性能、高强度、良好的热稳定性和耐磨性,是核反应堆、航空器及高端装备中各种导电导热元件的关键材料,在核电、航空、交通、军事等诸多重要领域有不可替代的作用。原位合成法是在一定温度下金属基体内发生化学反应,原位生成一种或几种陶瓷增强体的技术。原位反应制备颗粒增强铜基复合材料存在两个重要的问题亟待解决:一是增强相的团聚问题,二是增强相的尺寸调控问题。本文总结了几种较为常用的制备弥散强化型铜基复合材料的原位合成方法,并对比分析了几种方法的特点、优劣及技术难点。同时,本文综述了原位合成法对铜基复合材料中颗粒尺寸和分布的影响,分析了原位合成法不同参数对复合材料力学及综合性能的影响规律,并从增强相颗粒形核与生长的原理出发,提出了促成细小弥散颗粒增强相的工艺方案。

超声滚压表面复合强化研究综述

摘要:超声滚压技术通过位错的湮灭和产生将晶粒细化至纳米级,提高了材料硬度和耐磨损等性能。探讨了如何进一步提升材料的使役性能,通过将超声滚压与其他处理技术相结合形成复合加工工艺,克服单一超声滚压处理工艺的局限性,如超过塑性变形的极限或过度强化带来的起皱、开裂和压溃等。超声滚压表面复合强化技术作为特种复合加工工艺,在零件高性能表面制造中具有明显优势。根据超声滚压在复合工艺中的位置顺序,分别介绍了超声滚压前端强化、同步强化和后续强化3 种加工类型。超声滚压前端复合加工技术主要包括超声滚压复合物理气相沉积技术和超声滚压复合离子注入技术等。在超声滚压同步强化方面,讨论了声电耦合和温度场辅助超声滚压对变形层厚度和摩擦磨损性能的影响。在超声滚压后续强化方面,介绍了涂层复合超声滚压技术,讨论了它对涂层裂纹、孔隙以及表面粗糙度的影响。此外,分析了超声滚压对复合强化过程中材料微观组织演化和塑性变形的作用机制,总结了这些技术在改善表面强化效果和满足复杂服役要求方面的研究现状。最后,展望了超声滚压复合强化技术的应用前景和发展方向,强调了它在提高材料使役性能方面的研究价值和目标。

面向复合材料带隙预测的两段式集成学习模型构建

摘要: 带隙是钙钛矿型复合氧化物材料重要的特征参数,对材料的物理化学性质起决定性作用,如导电性能和光电性能等。为了寻找适合不同应用领域的钙钛矿型材料,利用机器学习进行带隙预测是一种重要的研究手段。构建了一个两阶段异质集成学习模型,在第一阶段使用多种不同的基础机器学习器(回归模型)进行预测;在第二阶段把对预测结果影响较大的描述子和基础机器学习器进行集成学习。利用该模型对210种钙钛矿型复合氧化物材料的带隙进行预测,并与多种独立的机器学习算法以及不同集成策略模型的预测性能相对比,评估了本模型的预测性能。结果表明,这种两段式的集成学习模型能够更好地学习到材料数据的内在关系,并具有较好的预测效果和较强的泛化能力。

光催化纳米抗微生物自清洁复合材料研究进展

摘要:表面光催化材料广泛用于表面自清洁、污水处理、水制氢等领域。特别是复合半导体纳米材料,利用p-n结原理可以大幅度提高表面自由电子和电子空穴浓度,从而提高吸收太阳光的能力,具有广阔的应用前景。阐述了纳米光催化材料领域的研究进展,以及在食品包装、医疗器械、交通设备及建筑材料领域抗菌自清洁的应用前景。

碳纤维复合材料高温界面性能研究进展

摘要:碳纤维复合材料以其强度高、耐腐蚀、质量轻、抗疲劳等优良特性被广泛应用于航空航天及国防军工领域。然而,航空航天用复合材料结构部件在高温、湿热环境中会发生界面损伤和失效。上浆剂是碳纤维复合材料界面相的重要组成部分,研制可以增强界面强度和耐高温的上浆剂对提高复合材料的热力学性能具有重要意义。文中从碳纤维表面上浆剂的角度出发,重点介绍了碳纤维复合材料界面特性、上浆剂的作用机理以及高温下复合材料界面的破坏机制。最后,针对环氧上浆剂耐热性差的缺点,阐述了碳纤维耐高温涂层改性和纳米粒子改性,重点介绍了聚酰亚胺、聚醚醚酮、生物活性多巴胺及氧化石墨烯、多面体低聚倍半硅氧烷(POSS)纳米粒子等类型改性上浆剂的研究进展。指出发展环境友好型上浆剂和POSS纳米粒子改性将是下一步工作的重点。

采用不同金属材料铆接修补碳纤维复合材料板的性能对比

摘要:随着复合材料在主承力结构上的应用,复合材料修理技术已经成为复合材料服役周期内的重要一环,其中利用金属的铆接修补方法在快速修补技术中具有重要应用。采用中心挖跑道形孔法模拟碳纤维复合材料损伤,分别使用不锈钢板与钛合金板对复合材料损伤件进行铆钉修补,对损伤件和两种修补件进行轴向拉伸试验,并采用应变计监测复合材料孔边及金属板中心应变。试验结果表明:采用不锈钢和钛合金与复合材料损伤件以铆接方式得到的修补件可承受的最大载荷相同,与未修补的相比提升了65.2%,说明对复合材料损伤板使用金属材料铆接修补具有一定补强效果,并且与使用不锈钢和钛合金材料进行修补的效果相当;在修补件拉伸过程中,碳纤维复合材料先于修补用金属材料失效;2种金属铆接修补件的破坏应变比无修补的损伤件的破坏应变略有增加但影响不大。