压电光子学效应及其应用

摘要:近年来, 压电光子学作为一个新兴的研究领域吸引了学者们的广泛关注. 压电光子学效应是压电半导体的压电极化和光激发的耦合, 是利用应变诱导的压电极化调控材料能带结构进而控制电子-空穴的复合发光过程.压电光子学效应为新光源、智能触觉传感和机械光子学等重要技术提供了研究基础, 尤其结合第三代、第四代半导体材料同时具有压电效应和半导体特性的优势, 有望实现高性能的力-致发光器件. 本文简要介绍了压电光子学效应的基本原理、材料体系以及压电光子学器件的研究进展, 并对这一学科的未来发展进行了展望.

面向神经电子接口器件的有机材料进展与展望

摘要:神经电子接口器件能够在生物体神经系统界面与数字世界之间创建直接连接, 实现信号的采集、操控与反馈,是实现神经系统与外界双向交互的桥梁. 有机分子具有多重弱相互作用, 是与生命体的分子结构和力学性质最相似的光电功能材料, 是用来构筑神经接口材料与器件的理想载体. 本文总结了面向神经电子接口器件的有机材料研究进展,汇总了有机材料在分子设计和聚集态结构调控方面的研究策略, 并展望了神经接口器件的有机材料发展方向.

AI驱动的6G空口: 技术应用场景与均衡设计方法

摘要:为应对6G 系统在容量、频谱效率、能量效率等关键性能指标上面临的严峻挑战, 将人工智能(articial intelligence, AI) 技术引入空口传输已成为重要的技术突破方向. 然而, 当前6G 空口AI 研究主要聚焦于设计高精度AI 模型以提升通信能力, 普遍忽视了工程实践中所需的算力、复杂度和空口资源等AI 代价, 对模型泛化能力和推理时延等关键AI 质量指标也缺乏系统性考量. 这种过度依赖算力资源追求通信能力提升的研究范式, 难以支撑智能化网络的可持续发展. 本文系统分析了AI 在6G空口传输中的典型应用场景与关键技术挑战, 涵盖单功能模块性能增强、多功能模块联合优化以及复杂数学问题低复杂度求解等重要领域; 创新性地提出了综合考虑空口AI 能力、质量和代价的三维联合优化设计准则, 通过最大化多场景通信能力与综合代价的比值实现三角均衡, 有效弥补了现有设计准则中质量和代价维度缺失的不足. 此外, 通过多个设计示例验证了所提方法的有效性, 并深入探讨了空口AI 标准化面临的技术路径与挑战. 本文为6G 空口AI 技术的理论研究、标准化与工程实践提供了参考.

电子浆料用微细金属粉体材料研究进展

摘要:电子浆料是电子信息行业的基础材料,广泛应用于航空、航天、电子信息、通信设备、汽车工业等诸多领域。随着电子信息快速化、高集成化的发展趋势,作为导电相的金属粉体材料要求具备高纯、形貌可控、无团聚、粒径可控且分布窄、氧含量低等特点。本文总结了电子浆料的主要用途,并对微细金属粉体材料的制备方法进行分析,提出了球形、片状微细金属粉体材料制备技术及应用的发展方向。

液态金属在电子热控中的应用进展与挑战

摘要:液态金属作为当下科学和工业前沿的璀璨明珠,不仅是实际应用中不可或缺的重要组成部分,更是一个充满未知奇迹的探索领域。其独特的物理性质使得它在电子热控方面备受瞩目。文中剖析了热控应用中至关重要的典型液态金属的物理参数和性能,深入挖掘了液态金属在电子热控中的应用场景,介绍了它作为热界面材料、相变储能材料和循环工质的现状和研究进展,并进一步阐述了液态金属在电子热控应用中面临的主要技术挑战,提出了应对这些技术挑战的技术途径,指出了液态金属未来的研究方向。

基于纳米铜膏的导电结构激光并行扫描烧结成型技术

摘要:针对柔性基板中导电结构的快速成型,对纳米铜膏的多道激光并行扫描烧结技术进行了优化。探究了不同功率和填充间距对激光烧结过程中的纳米铜膏烧结形貌和电阻率的影响,得出最佳的工艺参数。适当缩小间距可提高烧结程度和导电性,但间距过小易导致基板过热。实验结果表明,最佳工艺参数组合为功率170 mW、间距10 μm、光斑直径15 μm,此时烧结线路呈现金属铜色,并形成网状烧结结构,测得电阻率为5.32×10-6 Ω·cm。对比聚酰亚胺(PI) 和聚对苯二甲酸乙二醇酯(PET) 薄膜在激光烧结过程中的效果,分析了基板的耐热性和透光性对烧结效果的影响机理,为后续清洗工艺提供可行性参考。

微纳电子静电打印:原理、工艺及应用

摘要:随着电子器件向小型化、集成化、多功能化方向发展,传统电子制造技术在制造精度、材料适应性、工艺灵活性等方面暴露出局限性,而静电打印技术已发展为微纳电子增材制造的一种新手段,故综述了微纳电子静电打印的技术原理、材料工艺及潜在应用。首先,阐述该技术的基本原理,着重介绍了微滴喷射、泰勒锥射流两种打印模式;接着,探讨金属纳米材料油墨、金属前驱体油墨和液态金属等不同电子材料的静电打印工艺特点和适用范围;最后,总结该技术在微纳电路、柔性电子、曲面电子及生物传感等领域的最新应用研究,并展望其未来研究方向,以促进静电打印技术在微纳电子领域的技术发展。

金属铜电沉积调控及其在芯片制造中的应用

摘要:金属铜因其优异的导电性、导热性、机械延展性和抗电迁移性, 在芯片制造工业中作为互连材料广泛应用。铜互连结构的制备主要使用湿法的电化学沉积技术。本文针对芯片制造相关金属铜电沉积工艺, 系统介绍了金属铜电沉积调控用关键添加剂组分及其作用原理, 并详细介绍了电镀铜在芯片制造核心工艺(大马士革电镀、硅通孔、铜柱电镀及再布线层电镀)中的技术需求、工艺流程及未来技术发展趋势。最后, 本文针对我国高端电子电镀行业的发展现状, 对金属铜电沉积调控及其在芯片制造中的应用未来发展方向进行了展望。

大尺寸有机基板的材料设计与封装翘曲控制

摘要:倒装芯片球栅阵列(FCBGA) 基板具有尺寸大、层数多等特点,可以满足大尺寸芯片超高速运算的需求。随着芯片尺寸的增大,有机基板的翘曲问题变得更加突出,因此,需要对有机基板材料在热膨胀系数(CTE)、模量、树脂收缩率、应力控制等方面进行升级。对FCBGA基板使用的大尺寸有机基板材料进行研究,重点研究其关键性能参数,如CTE、模量和树脂收缩率等,进一步探讨了对树脂基体、无机填料和玻璃纤维布等材料的选择以及生产制造过程中的应力控制,并对大尺寸有机基板材料技术的发展趋势进行了展望。

全聚合物太阳电池材料与器件

摘要:全聚合物太阳电池的光活性层中的给受体材料均由聚合物构成, 其具有优异的形貌稳定性及机械稳定性等突出优点, 在实现大面积、柔性有机太阳电池的制备中具有较大潜力, 引起了越来越多研究者的兴趣。随着各种新型聚合物给体/受体材料相继被开发出来及器件结构的不断发展, 全聚合物太阳电池异军突起, 器件效率目前已经突破18%。然而, 相较于非富勒烯小分子受体太阳电池, 全聚合物太阳电池面临效率仍需进一步提高、聚合物给/受体性能的批次差异等问题, 如何开发高性能聚合物给/受体材料及制备高效器件仍面临一定的挑战。本综述着眼于全聚合物太阳电池给/受体材料的开发、器件结构调控、界面工程等方面, 系统总结了近年来该领域内的代表成果, 并对未来高效全聚合物太阳电池材料、器件的发展做出了展望。