半导体光电阴极的研究进展

摘要:半导体光电阴极具有量子效率高、暗电流小的优点,被广泛应用于光电倍增管、像增强器等各类真空光电探测和成像器件,促进了极弱光的超快探测和成像技术的发展。另外作为能够产生高品质电子束的真空电子源,用于加速器光注入器、电子显微镜等科学装置。本文首先介绍了目前常用半导体光电阴极的分类以及在真空光电探测成像、真空电子源领域的具体应用。然后对碱金属碲化物光电阴极、碱金属锑化物光电阴极、GaAs光电阴极三类典型半导体光电阴极的制备技术进行了总结,并介绍了微纳结构、低维材料、单晶外延等新技术在半导体光电阴极研制中的应用。最后对半导体光电阴极的技术发展进行了展望。

半导体纳米晶体的冷等离子体合成: 原理、进展和展望

摘要:冷等离子体已发展成为纳米材料合成领域的重要技术途径. 无需化学溶剂和配体, 冷等离子体为高品质半导体纳米晶体的生长提供了独特的非热力学平衡环境: 等离子体中的高能电子与纳米颗粒碰撞使得纳米颗粒带电, 可降低或消除纳米颗粒之间的团聚; 高能表面化学反应能够选择性地将纳米颗粒加热到远超环境气体温度的温度; 气相中生长物和固相纳米颗粒表面结合物之间化学势的巨大差异, 有利于实现纳米晶体的超高浓度掺杂. 本文综述了冷等离子体合成半导体纳米晶体的研究现状, 详细讨论了冷等离子体中纳米颗粒形核、生长和晶化的基本原理, 总结了冷等离子体在单元素、化合物和复杂核壳结构纳米晶体方面的研究进展, 特别强调了冷等离子体在纳米颗粒尺寸、形貌、结晶状态、表面化学和组分等性能调变上的技术优势, 概述了超掺杂纳米晶体呈现的新颖物性, 展望了冷等离子体技术在纳米晶体合成领域的应用前景.

柔性电子材料与器件在可穿戴传感领域的发展现状、挑战与创新策略

摘要:可穿戴材料与器件正朝着柔性、轻薄、无感、智能化和可长期佩戴等方向发展,以满足人体生理心理等个性化需求。这一趋势为运动健康监测领域带来了革新,并得到了学术界和工业界的广泛关注。然而,在满足人体个性化发展需求的同时,可穿戴柔性材料与器件本身也面临着机械鲁棒性、信号稳定性、软硬接口连接和生物相容性等性能方面的挑战。因此,本文旨在从实际运动健康监测需求的角度出发,讨论构建可穿戴柔性材料与器件的材料、结构和制备工艺。同时,深入探讨了其在机械、电气和生物性能等方面所面临的主要挑战因素及其解决路径。最后,预测了未来可穿戴柔性电子材料与器件的发展方向,包括全柔性集成、机械鲁棒性的增强、信号解耦与识别的高精度化、监测的稳定性与灵敏度、快速响应性、超薄无感设计、多模态信号处理以及智能化自适应反馈等。

新型WN纤维透明电极的制备及透光导电性能

摘要:纤维透明电极兼具高透光与高导电性,有望取代传统锡掺杂氧化铟(简称ITO)成为新一代透明电极材料。金属纤维虽具有高导电性,但在受热或酸碱腐蚀条件下其性能急剧下降,应用环境受限。针对上述问题,本文采用电纺丝结合氮化热处理工艺制备出新型WN 导电纤维,进一步通过近场直写方法实现纤维的有序排列与WN 纤维透明电极的图案化构筑,以获得高透光高导电且耐热耐腐蚀的新型高性能透明电极。研究结果表明,WN 纤维的导电性随氮化温度的升高而增大,900℃氮化制备的WN 纤维的电导率高达2189 S/cm。通过近场直写可以有效调控WN 纤维透明电极的网格结构,进而调控其透光性与导电性。当网格间距为200μm 时,对应透明电极的透光率高达94%以上,方阻低至6.0Ω/sq,性能优于目前报道的金属纤维透明电极。与金属纤维相比,WN 纤维透明电极还具有优异的耐热与耐腐蚀性,在160℃氧化16h,方阻仅增加8%,在pH 值为1~13 的酸碱溶液中腐蚀1min,方阻增幅≤3%。

面向电子皮肤的智能材料构建策略

摘要:电子皮肤作为具有模仿人类皮肤感知功能的新型的柔性可穿戴传感器,具有轻薄、柔软、灵活等特点,可将外界刺激转化为不同的输出信号,近年来在健康监测、人机交互等领域展现出巨大的应用潜力。本文从构建电子皮肤的智能材料角度出发,对电子皮肤常用基体和导电填料及其几何结构构建等方面进行了综述,并基于电子皮肤应用所需面对的复杂环境对其生物相容性、黏附性、自修复性、自供电性等应用性能需求进行讨论,进而指出电子皮肤在研究过程中仍然存在对人体皮肤的综合感知性能差、制备工艺复杂且昂贵、感知刺激信号存在滞后性等问题,通过材料和结构优化提升电子皮肤基础性能,从而构建优异性能、多功能化、多种外界刺激同步检测成为电子皮肤发展趋势,并且在医疗诊断、软体机器人、智能假肢和人机交互等领域表现出极大的潜力。

芯片用金刚石增强金属基复合材料研究进展

摘要:随着电子设备集成化程度越来越高,对高导热封装材料的需求也越来越大,金刚石增强金属基复合材料凭借其高导热性能成为研究焦点。然而,由于金刚石颗粒与金属基体之间的不润湿特性,具有高导热性的金刚石增强金属基复合材料难以制备。文中综述了金刚石增强金属基复合材料的研究进展,包括界面改性、工艺参数优化和复合材料制备方法,并指出了金刚石增强金属基复合材料目前存在的问题和今后的研究方向。

金属与光子晶体组合型结构色颜料的制备及性能研究

摘要:[目的]基于干涉效应的法布里−珀罗(F-P)腔及介质层−吸收层−介质层−金属(DADM)结构的不透明结构色颜料由于包含一层很薄且对膜厚波动极其敏感的吸收层,在工业化生产中常常出现色相偏差大、工艺稳定性差、生产效率低等问题,亟需寻求一种更稳定高效且低成本的制备方式。[方法]设计了金属与一维光子晶体组合型(MPC)结构,其中不包含对膜厚波动敏感的薄吸收层,而是利用一个金属膜层来实现吸收和部分反射的作用,以实现在白色等浅色的底色上呈现颜色。采用物理气相沉积(PVD)工艺分别制备了 MPC和 DADM两种类型的结构色颜料 Pink 1和 Pink 2,分析了它们的光谱、物理性质及颜色。[结果]Pink 1、Pink 2 都是微米级片状不透明颜料,颜色随观察角度而异,在深色和浅色的底色上都可以呈现出颜色。与采用 DADM 结构的 Pink 2相比,采用 MPC结构的 Pink 1在饱和度及随观察角度不同而异色的能力稍弱,但其制备工艺和设备的容错率更高、稳定性更好。在保持颜料覆盖率和最高反射率等性能相近的情况下,Pink 1颜料的日均产能比 Pink 2 颜料高10% ~ 15%。通过改变 MPC膜层结构,还可以实现绿、蓝等新颜色,以及赋予结构色颜料磁性等其他功能。[结论]MPC结构有利于高效率、低成本地进行大规模生产,是一种获得中等饱和度及角度依赖性的不透明结构色颜料的可行方式。

触觉传感器与电子皮肤研究进展

摘要:触觉传感器是机器人与环境交互的重要元件,是机器人与环境之间不可或缺的介质。近年来,触觉传感器在医疗设备、生物力学、健康监测等领域的应用成为研究热点。文中回顾了过去50年来国内外机器人触觉传感技术的研究情况及成果,介绍了不同传感机理的触觉传感器及其特点以及仿生触觉传感器电子皮肤的研究现状,指出了触觉传感器全柔性化、多功能化、自供电的未来发展方向。

智能可穿戴柔性压力传感器的研究进展

摘要:柔性压力传感器可以附着在人体皮肤感知外界压力信号,且具有传感范围广、响应时间短、灵敏度和耐久性高等特点,因此被广泛应用于电子皮肤和人机交互等领域。柔性压力传感器通常由柔性基底、活性材料、导电电极组成。其中,一种或多种活性材料通过与柔性基底复合形成传感材料,其受外界刺激产生的变形会引起阻值等变化,进而实现传感功能。此外,通过引入微结构可增加传感材料的可压缩性以及对微小压力的敏感度,提升传感性能。本文围绕薄膜和织物两类基底,综述了在其中掺杂碳基、金属基与黑磷基等活性材料的柔性压力传感器的研究,重点论述了不同传感器的制备方法、机电性能与应用场景,总结了各类传感器的优缺点。在此基础上,对未来智能可穿戴柔性压力传感器如何实现宽范围压力检测、商业化以及制作流程无毒化与长时期生物相容性实验等方面的研究做出了展望。

高精度激光共焦半导体晶圆厚度测量

摘要:针对半导体晶圆厚度的高精度非接触测量问题与需求,提出了基于激光共焦的高精度晶圆厚度测量方法。该方法利用高分辨音圈纳米位移台驱动激光共焦光探针轴向运动扫描,利用激光共焦轴向响应曲线的峰值点对应物镜聚焦焦点的特性,分别对被测晶圆上下表面进行高精度瞄准定位;通过光线追迹算法精确计算出晶圆表面每个采样点的物理坐标,实现了晶圆厚度的高精度非接触测量。基于该方法构建了激光共焦半导体晶圆厚度测量传感器,实验和分析表明,该传感器的轴向分辨力优于5 nm,轴向扫描范围可达5. 7 mm,6 种晶圆厚度测量重复性均优于100 nm,单次测量时长小于400 ms。将共焦定焦技术有效地应用于半导体测量领域,为晶圆厚度的高精度、无损在线测量提供了一种新技术。