银纳米线柔性透明导电薄膜的制备

摘要:采用多元醇法制备了直径约40nm、长径比约300的银纳米线。以聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(polyethylene terephthalateco-1,4-cylclohexylenedimethyleneterephthalate,PETG)膜为基底,采用旋涂法制备了银纳米线柔性透明导电薄膜,探究了不同辅助成膜剂对成膜性能的影响。发现以黄原胶为辅助成膜剂制备的银纳米线薄膜具有较理想的透明性和导电性;银纳米线分散液沉积密度对银纳米线薄膜的透明性和导电性有重要影响,当沉积密度为10mg/cm2时,银纳米线薄膜的透光率和导电性能最优;弯曲测试结果表明,银纳米线薄膜具有很好的柔韧性。

高逼真3D光场显示关键技术

摘要:详细总结了高逼真3D光场显示的关键技术及其基本原理,包括光场显示系统构建、光场显示控光技术和光场显示图像编码等,并详细阐述了它们在3D 光场显示技术中的作用。为使高逼真3D光场显示技术真正地得到推广应用,必须全面考虑各种因素,包括完善显示系统的构建、控光技术的优化和编码技术的改进。希望该综述能够为3D光场显示技术的研究和发展提供有益参考。

镍基电极材料在超级电容器中的制备与应用

摘要:Ni因其价格低廉和对环境友好,被视为具有发展潜力的超级电容器电极材料之一;且它与其他电极材料复合可以有效阻止团聚反应的发生,能大大改善材料的电化学性能。近年来Ni的(氢)氧化物与碳材料、聚合物等复合制备新的电极材料已经成为储能领域研究的热点。介绍了Ni的化合物作为电极材料储能的机制以及在复合电极材料中的应用,综述了近年来国内外报道的各类镍基复合电极材料的研究进展,并对其今后的发展趋势进行了展望。

电喷印刷柔性传感器

摘要:柔性传感器因其在弯折、扭曲、拉伸等大变形条件下具有稳定的传感性能,所以在软体机器人、可穿戴电子和生物医疗等领域具有潜在的应用前景,受到了国内外研究者的广泛关注。与传统光刻技术相比,印刷技术制造作为增材制造,具有绿色、低成本和可大面积制造的优势,被广泛应用于柔性电子器件制备。其中,电流体动力喷墨打印(电喷印) 技术因其具有多种功能材料的兼容性,被认为最有可能替代传统的光刻技术,实现柔性传感器高分辨率和跨规模制造。近年来,电喷印技术在微型化柔性传感器制造领域显示出广泛的应用潜力。本综述重点介绍了电喷印刷柔性传感器的工艺、材料和应用的最新研究进展。首先,详细介绍了电流体动力喷墨打印技术的工作原理,总结了用于电喷印的各种功能性墨水材料,然后,介绍了电喷印刷中墨水和柔性基底间表界面调控的问题。随后,综述了电喷印方法在柔性压力传感器、柔性气体传感器和柔性电化学传感器等柔性传感器制造的应用进展。最后,总结讨论了下一代电喷印刷技术在柔性传感器领域的机遇与挑战。

面向6G的低时延高可靠边缘计算架构

摘要:移动边缘计算(MEC)是6G移动通信网络中连通通信与服务、实现万物智联的支撑技术。针对MEC系统的计算时延优化,提出横向多主机架构;为优化MEC系统的传输时延及解决多主机并行计算的掉队者问题,提出多连接主从多主机架构。以上均设计了完整的信令流。针对MEC系统的性能评估,搭建了基于开源库的多主机MEC仿真平台。实验表明,提出的横向多主机MEC架构可有效提高计算时延性能;提出的多连接主从多主机MEC架构有效缓解掉队者问题,提高传输时延性能;搭建的MEC仿真平台能够有效评估多主机架构的关键性能指标。

电镀铜技术在电子材料中的应用

摘要:电镀铜层具有良好的导电、导热、延展性等优点,因此,电镀铜技术被广泛应用于电子材料制造领域。本文概括了几种常用电镀铜体系的特点,重点介绍了在电子制造中应用较广的酸性硫酸盐电镀铜镀液的组成和各成分作用。简述了电镀铜在铜箔粗化、印制电路制作、电子封装、超大规模集成电路(ULSI)铜互连领域的应用,并对近年来电子工业中应用的几种先进电镀铜技术,包括脉冲电镀铜技术、水平直接电镀铜技术、超声波电镀铜技术、激光电镀铜技术等进行了评述。

高性能存储芯片产业发展研究

摘要:高性能存储芯片堪称全球人工智能蓬勃发展的核心驱动力,不仅有力推动了信息技术产业不断迈进、显著提升电子设备性能、为服务器和数据中心的发展注入强劲动力,还极大促进了人工智能与机器学习、物联网、虚拟现实以及增强现实等新兴技术的崛起。本文全面系统地梳理了我国高性能存储芯片的发展需求,分析了高性能存储芯片的国际发展态势,总结了我国高性能存储芯片的发展现状,深入剖析了发展进程中所面临的问题与挑战,精准指出其带来的变革机遇,并提出以下针对性的对策建议:一是分层施策夯基础,变革策略求突破;二是传统新型两手抓,多条路线齐头并进;三是加速形成新技术布局,逐渐打破市场层垄断,期望能够加速我国高性能存储芯片的发展进程。

面向超高频植入式RFID芯片的温度传感器研制

摘要:基于0.18μm工艺设计并实现了一款用于超高频植入式RFID芯片的温度传感器。该温度传感器将MOS管作为感温元件,采用基于亚阈值MOS管的低功耗感温核心。传感器利用PTAT和CTAT两种电压延时器构成脉宽产生电路,从而生成脉宽信号,并与时间数字转换器(TDC)一起构成温度量化电路。核心电路的版图面积为298μm×261μm,测温范围为35~45℃。流片测试结果表明,三颗芯片在两点校准后的测温最大误差为±0.4℃,关键温区的最大误差为±0.2℃,实测功耗为623nW。基于流片实测结果,发现了当前芯片的局限性,并提出了未来芯片结构的改进方向。

碳化硅器件挑战现有封装技术

摘要:碳化硅(SiC)器件的新特性和移动应用的功率密度要求给功率器件的封装技术提出了新的挑战。现有功率器件的封装技术主要是在硅基的绝缘栅双极晶体管(Insulated Gate Bipolar Transistor,IGBT)和金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor,MOSFET)等基础上发展起来的,并一直都在演进,但这些渐进改良尚不足以充分发挥SiC器件的性能,因而封装技术需要革命性的进步。在简述现有封装技术及其演进的基础上,主要从功率模块的角度讨论了封装技术的发展方向。同时讨论了功率模块的新型叠层结构以及封装技术的离散化、高温化趋势,并对SiC器件封装技术的发展方向做出了综合评估。

基于纤维素纳米纤维的电磁屏蔽材料研究进展

摘要:纤维素纳米纤维 (CNFs)作为一种新型的一维纳米材料,具有来源广泛、长径比高、力学性能优异等特点。以CNFs为载体或增强相通过不同的方法可以制备出多种多样的电磁屏蔽功能复合材料,如气凝胶、薄膜和海绵等。本文基于电磁屏蔽的原理,综述了CNFs基电磁屏蔽材料的制备方法及研究进展,并比较了不同的CNFs 基电磁屏蔽材料在结构和性能上的差异,最后对CNFs基电磁屏蔽功能复合材料未来的发展方向进行了展望。