全固态离子选择性电极在可穿戴电化学传感器中的进展

摘要:人体汗液富含丰富的与身体健康状况相关的电解质, 采用可穿戴电化学离子传感器对汗液实时监测可为身体健康提供合理的指导。基于全固态离子选择性电极的可穿戴电化学传感器因能够实时无创地分析生物体液离子受到越来越多的关注。开发新的固接层材料, 探索新的电位响应机理及在可穿戴设备上的应用促进了全固态离子选择性电极的发展。本文综述了全固态离子选择性电极的研究进展, 包括传统的电位响应机理(氧化还原电容和双电层电容原理)和新型固接层材料(导电聚合物、碳和其他纳米材料)以及在可穿戴柔性传感器方面的应用。 最后对全固态离子选择性电极存在的挑战和未来的前景做出了展望。

柔性触觉传感电子皮肤研究进展

摘要:柔性触觉传感电子皮肤是一种模拟天然皮肤触觉功能的设备, 可以附着在人体皮肤或机器人等表面, 感知各种刺激如压力和温度等, 在智能假肢、机器人、健康医疗等领域有着重要的应用, 具有巨大的潜在市场价值, 是科研界和产业界共同关注的研究热点之一. 柔性触觉传感电子皮肤主要可分为柔性压力触觉传感电子皮肤、柔性温度触觉传感电子皮肤和柔性解耦多模触觉传感电子皮肤等三大类. 本文主要综述了近年来柔性触觉传感电子皮肤的研究进展, 重点归纳总结了上述三类柔性触觉传感电子皮肤的传感机制和工作特点, 从材料组成和器件结构等层面介绍了柔性触觉传感电子皮肤性能改进的不同方法. 除此之外, 本文还阐述了目前柔性触觉传感电子皮肤所面临的主要挑战、解决途径以及未来发展前景.

后摩尔时代芯片互连新材料及工艺革新

摘要:受高算力芯片的需求驱动, 尽管摩尔定律日趋减缓, 高端芯片的工艺复杂度和集成度仍在逐代增大。随着前道工艺中晶体管架构与其集成密度不断优化提升, 后道工艺所涉及的芯片内互连技术挑战愈发严峻, 迫切需要对互连材料与工艺进行革新。同时, 高集成度的系统级3D封装也是高性能芯片的关键解决方案, 其中核心的3D封装技术对芯片间互连材料与工艺不断提出新的要求。为此, 本文系统探讨了后摩尔时代芯片内和芯片间多代候选互连材料及其工艺的潜力及挑战, 从材料创新、工艺优化、架构突破、设计范式等多方面综合研判了未来互连技术的发展路径, 并对超导互连、光互连等颠覆性互连技术做了前瞻性分析, 可以预见互连材料的革新将有力推动新的芯片技术革命。

遥感大模型:综述与未来设想

摘要:深度学习极大地推动了遥感图像处理技术的发展,在精度和速度方面展现了显著优势。然而,深度学习模型在实际应用中通常需要大量人工标注的训练样本,且其泛化性能相对较弱。近年来,视觉基础模型和大语言模型的发展为遥感图像处理的大模型研究引入了新的范式。遥感大模型也称为遥感基础模型,基础模型因其在下游任务中的卓越迁移性能而备受瞩目,这些模型首先在大型数据集上进行与具体任务无关的预训练,然后通过微调适应各种下游应用。基础模型在语言和视觉及其他领域已经得到了广泛应用,其在遥感领域的潜力也正逐渐引起学术界的重视。然而,目前针对这些模型在遥感任务中的全面调查和性能比较仍然缺乏。由于自然图像与遥感图像之间存在固有差异,这些差异限制了基础模型的直接应用。在此背景下,本文从多个角度对常见的基础模型以及专门针对遥感领域的大模型进行了全面回顾,概述了最新进展,突出了面临的挑战,并探讨了未来发展的潜在方向。

金属铜电沉积调控及其在芯片制造中的应用

摘要:金属铜因其优异的导电性、导热性、机械延展性和抗电迁移性, 在芯片制造工业中作为互连材料广泛应用。铜互连结构的制备主要使用湿法的电化学沉积技术。本文针对芯片制造相关金属铜电沉积工艺, 系统介绍了金属铜电沉积调控用关键添加剂组分及其作用原理, 并详细介绍了电镀铜在芯片制造核心工艺(大马士革电镀、硅通孔、铜柱电镀及再布线层电镀)中的技术需求、工艺流程及未来技术发展趋势。最后, 本文针对我国高端电子电镀行业的发展现状, 对金属铜电沉积调控及其在芯片制造中的应用未来发展方向进行了展望。

薄膜铌酸锂光电器件与超大规模光子集成

摘要:近年来,薄膜铌酸锂光子集成技术发展极为迅速,其背后有着深刻的物理、材料、技术原因。单晶薄膜铌酸锂为解决光子集成芯片领域长期存在的低传输损耗、高密度集成以及低调制功耗需求提供了至今为止综合性能最优的解决方案。面向未来的新一代高速光电器件与超大规模光子集成芯片应用,本文回顾了薄膜铌酸锂光子技术的起源及其近期的快速发展,讨论了若干薄膜铌酸锂光子结构的加工技术,并展示了一系列当前性能最优的薄膜铌酸锂光子集成器件与系统,包括超低损耗可调光波导延时线、超高速光调制器、高效率量子光源,以及高功率片上放大器与片上激光器。这些器件以其体积小、质量轻、功耗低、性能好的综合优势,将对整个光电子产业产生难以估量的影响。

基于MXene电磁屏蔽材料的研究

摘要:电子设备的电磁辐射问题日益严重,开发高性能电磁屏蔽材料是现实的迫切需求。MXene由于其独特的层状结构、丰富的表面基团、优异的力学性能和突出的导电性,被认为在电磁屏蔽方面具有潜在的应用前景。为获得轻质、高效、稳定的电磁屏蔽材料,多种改性方法被用于提高MXene 材料的电磁屏蔽效能,如通过定量控制MXene层状结构构建三维多孔、多层和插层等多种形态,通过氧化、掺杂、热处理和接枝等手段调控MXene 表面终止基团及将MXene与其他材料杂化组装获得其他性能等。本文从结构设计、表面改性、复合杂化三方面综述了近几年国内外对MXene材料改性的研究进展,并对其提高电磁屏蔽效能进行了比较。

半导体光催化过氧化氢合成研究进展

摘要:近年来, 半导体光催化过氧化氢(H2O2)合成因其相较于传统化学合成方法在能耗和环保方面具有显著优势而受到了广泛关注, 在污染物处理、化学品合成、生物医疗等领域展现出良好的应用前景. 然而, 由于半导体光催化H2O2合成涉及复杂的反应机制以及产物相对较高的化学活性, 其在催化体系的设计、性能评估及优化方面呈现出一定的特殊性, 这也成为了当前研究的重点与难点. 本文聚焦半导体光催化H2O2合成, 对近期该领域的研究进展进行了综述. 在简要介绍H2O2产生机制基础上, 从催化体系筛选、催化反应器设计、性能评估、优化策略开发、应用场景拓展等方面对相关研究进行总结、归纳; 讨论了半导体光催化H2O2合成研究面临的挑战, 展望了该领域未来的研究方向及可能的突破点.

人工智能与计算化学: 电子电镀表界面研究的新视角

摘要:电子电镀是以芯片为代表的高端电子制造业核心技术之一, 其过程耦合了宏观多场作用下的物质传输与微观界面电化学过程, 且受动力学影响。如何利用计算化学的方法来研究其中的电沉积是一个挑战。电极与电镀液构成的界面是电镀过程重要的反应场所, 明确电子电镀表界面的双电层结构以及电沉积作用机理能够加快镀液配方的研发效率。本文重点介绍适用于电子电镀表界面机理研究的各类计算方法, 包括分子动力学模拟、数值仿真和数据驱动方法, 以启发读者充分利用人工智能的技术优势, 将适用于各种研究尺度的计算化学方法积极应用到电子电镀表界面基础研究中。

芯片高密度互连电子电镀成形与性能调控技术研究

摘要:信息技术的飞速发展, 对芯片性能提出了越来越高的要求, 芯片中晶体管和电子互连的密度也在不断增加。电子电镀是大马士革以及芯片封装电子互连的主要成形方法, 互连密度的提高对于电子电镀成形工艺及性能调控方法提出了许多新的要求。本文概述了本团队近几年在芯片高密度互连的电子电镀成形方法以及性能调控方面的研究成果, 主要包括3D TSV垂直互连及大马士革互连的填充及后处理工艺、高密度凸点电镀成形方法及互连界面可靠性研究、特殊结构微纳互连的制备及性能调控方法、微纳针锥结构低温固态键合方法、水相化学及电化学接枝有机绝缘膜等工作, 以期对芯片电子电镀领域的研究带来启迪, 推动芯片高密度互连技术的发展。