大尺寸金刚石晶圆复制技术研究进展

摘要:半导体技术的发展离不开大尺寸晶圆的高效制备。在半导体领域,晶圆复制可以通过同质外延生长后进行切割或者基于异质衬底进行异质外延来实现,从而批量生产。金刚石作为新型超宽禁带半导体材料,在电真空器件、高频高功率固态电子器件方面具有良好的应用前景。而由于金刚石材料具有极高硬度,晶圆复制也面临诸多问题。传统的激光切割方法虽然可以实现对超硬特性金刚石进行加工,但其较高的加工损耗已经无法满足大尺寸晶圆的制备需求,呕需开发损耗小、效率高的金刚石晶圆复制技术。文章介绍了目前常见的半导体晶圆复制技术,总结了金刚石复制技术的研究进展及现阶段发展水平,并对未来大尺寸金刚石晶圆复制技术的发展方向进行了分析与展望。

面向神经电子接口器件的有机材料进展与展望

摘要:神经电子接口器件能够在生物体神经系统界面与数字世界之间创建直接连接, 实现信号的采集、操控与反馈,是实现神经系统与外界双向交互的桥梁. 有机分子具有多重弱相互作用, 是与生命体的分子结构和力学性质最相似的光电功能材料, 是用来构筑神经接口材料与器件的理想载体. 本文总结了面向神经电子接口器件的有机材料研究进展,汇总了有机材料在分子设计和聚集态结构调控方面的研究策略, 并展望了神经接口器件的有机材料发展方向.

金刚石半导体及功率肖特基二极管研究进展和挑战

摘要:金刚石作为一种超宽禁带半导体,是下一代功率电子器件和光电子器件最有潜力的材料之一。其产业化仍需解决几个关键技术问题:大尺寸单晶外延生长、高质量晶圆制备技术、高效可控的掺杂技术及先进终端结构。首先,介绍了拼接生长以及异质外延获得大尺寸单晶衬底的研究进展。进而,综述了大尺寸单晶金刚石位错、缺陷调控技术及其加工技术的研究进展。最后,从功率器件设计及制备角度总结了金刚石掺杂及终端结构设计面临的挑战并提出了潜在的解决方案。

碲锌镉晶体的铟碲共掺杂退火研究

摘要:针对生长态碲锌镉晶体缺陷密度大和电学性能无法满足室温核辐射探测器的制备要求等问题,研究了铟碲共掺杂退火对碲锌镉晶体碲夹杂和电学性能的影响。利用分子动力学方法模拟了不同温度下铟原子在碲锌镉晶体中的扩散过程,获得了铟原子的扩散系数表达式,计算了铟原子扩散至碲锌镉晶体所需理论时长,在此基础上开展了铟碲共掺杂退火实验,进一步优化了退火工艺。实验结果表明,铟碲共掺杂退火70 h的碲锌镉晶体碲夹杂密度下降至27.61mm-2,体电阻率接近1011Ω·cm、漏电流低于4 nA(400V),电学性能达到核辐射探测器应用要求。

电子浆料用微细金属粉体材料研究进展

摘要:电子浆料是电子信息行业的基础材料,广泛应用于航空、航天、电子信息、通信设备、汽车工业等诸多领域。随着电子信息快速化、高集成化的发展趋势,作为导电相的金属粉体材料要求具备高纯、形貌可控、无团聚、粒径可控且分布窄、氧含量低等特点。本文总结了电子浆料的主要用途,并对微细金属粉体材料的制备方法进行分析,提出了球形、片状微细金属粉体材料制备技术及应用的发展方向。

金刚石固态微波功率器件研究进展和展望

摘要:被誉为终极半导体材料的金刚石具有超宽的禁带宽度、超高击穿电场、高的载流子漂移速率、极高的热导率、极强的抗辐射能力等特性,在微波功率器件领域具有很好的应用前景。金刚石微波功率器件的研究近几年引起了广泛关注,文章总结了金刚石微波功率器件的研究进展,重点分析了目前主流的氢终端金刚石、表面氧化物终端金刚石和掺杂金刚石实现的微波功率器件的研究进展、面临问题和发展展望。

DNA水凝胶的构建及柔性电子应用

摘要:水凝胶材料能有效提升柔性电子器件与人体组织的相容性,在智能穿戴、健康监测和人机接口等研究领域展现了巨大的应用潜力. 然而,传统的水凝胶材料难以在器件界面进行原位无损的结构调控,同时也缺乏对多类型生化刺激的识别响应能力,这制约了水凝胶柔性电子器件的高性能构筑和多功能应用. DNA水凝胶制备工艺温和,结构精确可控且具有丰富的生化识别响应性,是柔性电子器件功能化的理想材料之一. 本文着重介绍了DNA水凝胶的材料特性及其柔性电子器件应用的研究进展. 首先介绍了纯DNA水凝胶和杂化DNA水凝胶的制备方法,以及面向多类型功能界面的构筑策略. 通过对DNA水凝胶力学特性、识别响应性和生物相容性的深入分析,展示了其在器件功能调控和生物医学应用方面的重要价值. 其次,详细探讨了DNA水凝胶功能化的柔性电子器件在传感、储能和显示等方面的研究进展,展现了其在人体健康监测和智能穿戴领域的应用前景. 最后,对DNA水凝胶在柔性生物电子领域的未来发展进行了展望.

芯片级原子钟研究进展

摘要:芯片级原子钟是一种小体积、低功耗的高精度时钟,适合作为便携式时频设备广泛应用于科学研究、生产生活、军事领域等方面。本文介绍了芯片级原子钟的国内外研究进展,阐述了芯片级原子钟的原理及研制的关键技术,介绍了芯片级原子钟的发展方向,并对我国芯片级原子钟的战略发展方向进行了展望。

柔性可穿戴碲化铋基热电器件的研究进展

摘要:随着全球能源的消耗加剧,热电器件的开发应用成为解决能源消耗问题的有效途径之一,其中,碲化铋(Bi2Te3) 基柔性热电器件因在可穿戴领域逐步实现应用,得到了学界和业界的广泛关注。然而,受其材料成本较高、刚性结构等多方面因素的限制,Bi2Te3 基柔性热电器件难以在保持高效热电性能的同时,实现柔性可穿戴化应用。本文系统地阐述了当前Bi2Te3 基柔性热电器件在材料复合与柔性结构设计上的研究进展,特别是在柔性结构设计上,涵盖了块状、膜类及纱线型3 种结构。最后,总结分析了Bi2Te3 柔性热电器件未来可能面临的挑战与发展趋势,以期促进热电器件在可穿戴领域实现广泛应用。

光电器件中的负光电导效应及应用

摘要:随着信息化时代的高速发展,对微电子器件中光电材料的选择、新功能的开发提出了更高的要求。传统光电器件大多利用半导体材料在光照下电导率增加的正光电导性效应进行功能化设计。近年来,研究发现还存在另一种反常的光电导效应——负光电导(Negative photoconductivity,NPC),即在光照条件下电导率降低,由于其在光电探测、逻辑器件、神经形态器件、低功耗非易失性存储器方面的潜在应用而备受关注。NPC的产生机制一般包括载流子的俘获效应、表面分子的吸附‐解吸、表面等离子体极化激元和局域表面等离子体共振、光辐射热效应等。本文详细讨论了不同光电器件中NPC产生的物理机制,分析了材料选择、器件结构设计、能带结构变化对不同异质结器件中NPC效应的影响,概括了光电器件中负光电导效应的实际应用,这为光电器件的性能优化和新型光电器件设计提供了重要参考,为未来异质结光电信息器件实现尺寸更小、光导增益更高、速率更快、功耗更低奠定了科学基础。