X射线光电子能谱技术及其应用

摘要: X射线光电子能谱法(XPS)是最重要且使用最广泛的表面分析技术。较为全面地介绍了X射线能谱法,内容涵盖原理、分析方法、应用及技术进展。原理介绍基于理工科大学本科层级的知识,阐述了XPS的科学原理以及仪器原理;分析方法部分概述了分析的关键步骤及要点;应用部分以热门研究的材料类型分类(催化剂、生物材料、碳材料、高分子材料等)进行介绍,介绍的同时兼顾介绍了X射线光电子能谱法的一些常用技术以及在各种材料中的应用特点。本文旨在帮助该领域的初学者,包括尚未完全熟悉该技术的研究人员、研究生和X射线光电子能谱从业人员,使他们能够全面了解X射线光电子能谱技术。

石墨烯光催化材料及其在环境净化领域的研究进展

摘要:石墨烯作为一种导电率高、比表面积大、化学稳定性强的新型二维碳材料,在光催化技术领域显示出广阔的应用前景。本文综述石墨烯及其复合材料在光催化领域中的研究进展。首先介绍光催化基本原理与石墨烯的优异性能,总结石墨烯在复合光催化材料中的基本作用,即促进光生电子的传输、扩大光吸收强度和范围、提升吸附作用等。然后介绍各种石墨烯光催化复合材料(石墨烯/无机半导体、石墨烯/有机半导体、石墨烯/金属纳米粒子)及其多种合成方法。同时进一步阐述石墨烯光催化材料在环境净化领域中的应用,重点介绍在空气净化、水中微量污染物净化及废水处理方面的应用。最后指出目前的石墨烯光催化材料仍然存在催化效率低、成本高、不能实现大规模生产等问题,而对其结构及制备工艺等进行优化有望改善材料性能,提高其实际应用价值。

金属激光增材+X复合制造技术综述

摘要:激光增材制造技术(LAM)为航空航天复杂金属零件提供了极高的设计自由度和制造灵活性,但目前主流LAM 技术存在监测与控制难度大、热应力变形与缺陷难处理等关键问题。“增材+X”复合制造技术提供了多尺度解决方案,结合各辅助制造工艺的优点以改善增材成形材料的精度与性能。增材+机械场/磁场/声场/热场等能场可实现调控熔池流动、改善微观组织、控制晶粒尺寸方向、释放残余应力以及改善表面质量等有益效果的协同优化。简要回顾了LAM 技术特点及其在航空航天业的典型应用,总结了增减材、增等材制造技术的主要工艺与技术内涵,重点评述了非接触式的磁、声、热辅助场对增材熔池动力学、微观组织发展、表面质量、热梯度的作用机理以及模拟仿真研究。最后总结了各能量场辅助增材制造技术的优势与局限性,展望了金属激光“增材+X”复合制造技术的发展趋势。

高强金属丝材的力学行为与变形机理

摘要:金属丝材作为一类独特的结构及功能材料, 具有悠久的发展历史, 并在诸多领域发挥着不可替代的作用. 目前, 人们已经发展了多种成熟的丝材加工工艺, 并制备出多种高强韧金属丝材. 其中, 传统珠光体钢丝保持着金属丝材最高抗拉强度的世界纪录, 而新型高熵合金丝材成功克服了传统丝材强度与塑性之间的矛盾关系和低温脆性的问题, 显示出在复杂服役环境下的巨大应用潜力. 由于金属丝材各异的微观结构和物理化学特性, 其表现出各自独特的力学行为和复杂迥异的强塑性变形机理. 多晶合金丝材的高强度主要源于界面强化和位错强化等多种强化机制的共同作用, 其塑性变形涉及位错运动和变形孪生等多种复杂的塑性变形机理; 非晶合金丝材的高强度源于其本征的原子无序结构, 其塑性变形则主要与流动缺陷的激活与聚集有关. 为了进一步实现金属丝材强韧化, 研究者提出了微观组织细化和不均匀结构设计等有效途径. 随着金属丝直径的减小, 变形尺寸效应显现, 考虑尺寸效应的应变梯度塑性理论相继发展并有效应用于金属丝材力学行为描述. 本文对金属丝材的发展历史、制备工艺和典型高强金属丝材的力学行为、强塑性变形机理以及本构模型进行了回顾与综述, 并对未来研究值得关注的方向提出了几点展望.

石墨烯导热材料研究进展

摘要:石墨烯作为一种具有超高热导率的二维纳米材料,在导热领域有着广阔的应用前景。本文综述了石墨烯导热材料的研究进展,介绍了石墨烯本征热导率及其层数、缺陷、边缘情况等对热导率的影响,分析了石墨烯纤维的研究现状及存在的问题,讨论了各类石墨烯导热薄膜(纯石墨烯薄膜/石墨烯杂化薄膜/石墨烯聚合物复合薄膜)热导率的影响因素,归纳总结了各类三维石墨烯导热材料(无规分散石墨烯三维复合材料和特定结构石墨烯三维复合材料)的结构、性能与研究现状,最后指出了目前几种导热材料研究存在的问题并展望了石墨烯未来导热领域的发展方向,尤其是在LED照明、智能手机等高功率、高度集成系统中,石墨烯导热材料有着良好的发展前景。

微纳尺度固体超滑研究进展

摘要: 超润滑,指摩擦阻力极低的状态,是润滑技术发展追求的终极目标. 超滑能够大幅度减小甚至消除滑动界面的摩擦磨损、抑制摩擦能量耗散,有效延长运动部件的可靠性和服役寿命,具有重要的基础研究和工程应用价值.鉴于微纳尺度固体超滑是实现宏观工程超滑的基础,是可能解决现代制造业超精密、微型化发展面临严重摩擦磨损瓶颈问题的有效途径,因此有必要对学术界目前实现微纳尺度固体超滑的原理和典型方法进行探讨,深化认识固体超滑的实现策略,提高摩擦学研究服务现代文明的支撑能力. 从早期的生活生产经验总结,到近代的机械啮合理论、黏着学说乃至当代原子分子水平摩擦理论,人们对摩擦和润滑的认识不断提高,但都不曾回避“摩擦总是伴随着动能/机械能消耗”的观点,即摩擦是界面滑动发生能量耗散的力学体现,滑动势垒的存在是滑动产生摩擦阻力的本征原因. 因此,本文中将围绕如何降低滑动势垒、减小摩擦耗散的思辨理念,介绍当前固体超滑研究的发展和现状,着重探讨实现微纳尺度超滑的一般策略,简要综述学术界目前典型固体超润滑的原理和方法等. 首先,介绍了结构超滑的提出、发展及其应用;其次,探讨了连续滑动超低摩擦行为的基础原理及应用等;此外,阐述了近年来提出的压力诱导超滑的理念,着重从现象发现、基本原理、试验观测方法及其可能的基础和应用价值等方面,介绍了压力诱导超滑的研究进展. 最后,从基础研究和应用技术开发方面提出了超滑研究可能需要加强的几方面内容.以期通过当前综述,丰富学术界对超润滑的基本问题、科学意义及其应用价值的认识,阐明固体超滑的微观机理、实现策略,指出固体超滑面临的挑战及发展方向,助力固体超润滑从基础研究向工程应用迈进.

我国氟化碳材料的基础研究现状及发展趋势

摘要:氟化碳(CFx)是一种由碳质材料( 如石墨、 石墨烯、碳纳米管等不同化学结构的炭材料)和氟化试剂在一定条件下发生氟化反应而形成的具有C―F 键的碳衍生物,由于多样的碳骨架和可控的极性C―F 键,使其具有化学稳定性、带隙可调性以及超疏水性等多种优异性能,是新型碳基材料研究热点之一。本文以氟化碳材料的结构和性质为基础,分别从化学能源、摩擦润滑和半导体等领域的应用综述了近年来我国氟化碳材料的基础研究现状和发展趋势。同时,还介绍了我国氟化碳材料的产业化进程,指出目前在民用领域受限的主要原因,提出了当前氟化碳在不同应用领域存在的问题和未来发展机遇,为氟化碳材料的进一步扩大生产和实际应用提供方向。

潜在高熵陶瓷热障涂层材料的研究进展

摘要:热障涂层材料(TBC)是为航空发动机及燃气轮机提供热防护,延长其使用寿命的一种重要材料。近年对新型热障涂层材料的探索中出现各类高熵稀土氧化物,以期通过热力学上的高熵效应、动力学上的迟滞扩散效应、结构上的晶格畸变效应以及性能上的“鸡尾酒”效应获得优于单主元稀土氧化物的热学、力学、高温相稳定性及抗烧结腐蚀等性能。本文总结归纳了高熵稀土锆酸盐、铈酸盐、铪酸盐、钽酸盐及铌酸盐等五种高熵稀土氧化物的热学性质、力学性质及其他性质,着重强调了热导率和热膨胀系数,同时与相应单组分稀土氧化物的性能进行对比分析,探究影响其性能优劣的多种因素。最后指出未来或可将实验与第一性原理计算相结合,筛选出综合性能更加优异的高熵陶瓷热障涂层材料;同时,将高熵延伸至复杂组分或中熵陶瓷热障涂层材料也成为重要的拓展方向。

NiTi 形状记忆合金的功能特性及其应用发展

摘要:NiTi 形状记忆合金(shape memory alloys, SMAs)作为一种智能材料,具有良好的超弹性、形状记忆效应和生物相容性等功能特性,被广泛应用于航空航天、医疗器械和工程建筑等领域。其中超弹性在宏观上表现为发生较大的变形仍能恢复原形状,且其远大于常见金属可恢复的弹性应变。形状记忆效应则是温度激励下奥氏体和马氏体两相的相互转变,根据宏观变形分为单程、双程和全程形状记忆效应。而NiTi SMAs 的生物相容性体现在低弹性模量和低生物毒性等方面,可应用于正畸、矫正、心血管支架等医疗器件。为充分发挥NiTi SMAs 的功能,研究者们不断开发NiTi SMAs 相关的智能结构。本文简要综述了近年来研究和发展 NiTi SMAs 的不同功能特性及其对应的智能结构典型应用,详细介绍和讨论了NiTi SMAs 的功能特性、关注问题和应用领域。同时,也对 NiTi SMAs 阻尼性能和储氢特性进行了阐述。最后,展望了NiTi SMAs 在各领域应用上尚需重点关注的问题:利用增材制造技术调控微观结构实现超弹性的稳定性提升;通过建立本构模型为形状记忆效应的稳定应用提供理论指导,并进一步优化结构实现形状记忆效应的宏观放大;提高NiTi SMAs 在生物环境里的耐腐蚀性和医疗应用推广。因此,推动NiTi SMAs 在不同应用领域的个性化和功能定制化,尚需大量的跨学科研究。

减振降噪声学超材料的研究与应用进展

摘要:分析减振降噪声学超材料的研究进展,围绕减振降噪超材料研究领域的3 个方向(拓宽带隙、可调带隙和多功能集成)阐述不同类型超材料的机理,比对其减振降噪特性。并在此基础上进一步介绍声学超材料在船舶海洋等实际工程中的应用。超材料利用对结构(包括几何与材料)的设计改变其等效物性参数,以实现声学设计中阻抗匹配或失配的需求,从而实现减振降噪。分析结果表明,超材料的研发与使用将大大拓展船舶减振降噪途径的选择范围,并可以帮助克服低频减振降噪的瓶颈。