粉末高速钢的制备技术及发展方向

摘要:粉末冶金的本征优势能够很好地匹配高速钢所需的组织性能,使得粉末高速钢的产量占比稳步提升并逐步占据高速钢的高端市场。重点介绍了PM HSS 原料粉末三代的发展进程,分析了当前粉末高速钢主要制备技术的研究现状,并对这些技术的优缺点进行了比较,以便根据实际需求选择合适的粉末冶金工艺,同时归纳了各类型粉末高速钢制备样品的相关性能,指出了高性能粉末高速钢的发展战略方向。

纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展

摘要:摩擦电纳米发电机(TENG)自2012 年由王中林团队提出以来,其因成本优势和广阔应用前景,在能源领域备受关注。TENG的电极系统作为能量转换核心,由摩擦层和导电传输层组成。近年研究聚焦纳米材料等新型电极材料以提升输出性能,但是目前研究较为分散,缺乏系统总结。本文基于TENG工作原理,系统总结了纳米材料、水凝胶及气凝胶等复合材料的性能优势及在TENG 中的应用,通过对比不同策略对导电性、比表面积等参数的提升效果,提出优化水凝胶及气凝胶型TENG性能的关键方向,并展望未来发展趋势,旨在为研究者提供参考。

基于可编辑颜色和形状记忆液晶网络的信息存储材料

摘要:近年来,液晶网络材料因为在人工肌肉、软体机器人、微流控制器和4D 打印材料等智能软器件领域的应用受到了越来越多的关注。液晶网络材料在化学结构上同时包含聚合物交联网络和液晶基元,在性能上同时具有聚合物的可加工性、化学稳定性和力学特性以及液晶可调的各向异性,因此具有外观易编辑、功能可调、对多种刺激都能响应等优点。利用这些特点,可以将指定的形状或颜色信息精确地写入到材料中,同时在特定外界刺激(光,热,电场,溶剂等)下使信息再次显现,实现信息的存储、加密与读取。本文简要论述了具有可编辑颜色(包括结构色和荧光颜色)和形状记忆的液晶网络材料的信息存储方式,重点介绍了液晶网络材料在伪装、多级信息存储与信息传递等方面的应用研究进展。

光热材料的发展现状及应用前景

摘要:光热效应是指材料在太阳光或激光照射下产生热量的特性, 通过光热作用不仅能够最大限度地提高太阳能转换效率, 而且还可以充分发挥激光的传播优势打破材料在时间和空间维度上的局限性, 因而具有巨大的发展潜力和应用前景. 目前, 研究人员根据上述光热效应的特性和优势, 在能源利用、生物医药、催化转化、智能器件等领域进行了广泛和深入的研究和探索, 实现了该效应在光热海水淡化、光热治疗、光热催化、光热智能材料等领域的应用. 本文从目前研究中被普遍认可的光热效应机理出发, 综述了近期研究人员在光热材料开发及其利用等方面的研究进展, 并展望了光热材料未来可能发展方向, 以期进一步促进光热材料的发展及应用.

一维碳化物纳米材料的制备与性能研究进展

摘要:一维碳化物纳米材料具有高强度、高硬度、高化学稳定性、低电阻率及强抗氧化腐蚀性等优点,在超导材料、高温涂层材料、切割工具材料、超强增韧材料等领域得到广泛应用。根据现有一维碳化物纳米材料的研究进展,本文重点综述了该种材料的合成方法、生长机理、微观结构、性能特点等方面的研究进展,并对该领域的发展空间进行了展望,期望为一维碳化物纳米材料的研究、开发与应用提供参考。

纳米纤维素产业化进展及市场趋势分析

摘要:近年来,随着人们对可再生生物质资源转化利用的日益重视,纳米纤维素因其独特的性质而受到广泛关注。本文主要介绍了纳米纤维素国内外的产业化进展,并简要分析了纳米纤维素未来几年的市场趋势及面临的主要问题。

AI驱动的材料设计: 从小数据到大数据的范式转变

摘要:人工智能(AI)的崛起正推动材料科学迈入高效设计与发现的新时代, 其核心在于通过数据驱动的模型揭示材料构效关系的深层规律. 然而, 与自然语言处理、计算机视觉等领域相比, 材料数据的规模受限于实验合成表征以及高精度计算的高成本, 呈现出典型的“小数据”特征, 这为AI模型的泛化能力与预测精度带来严峻挑战.本文系统综述了面向小样本材料数据的高效学习策略与技术路径, 并介绍了课题组在该领域的研究成果: 首先,针对材料数据的高维度、稀疏性和强关联特性, 重点探讨基于迁移学习、主动学习与针对材料的特征工程来突破小样本约束; 其次, 剖析材料数据的演进趋势, 主要聚焦高通量计算、生成模型与标准化数据库的协同发展;最后, 展望材料大数据与AI深度融合的前沿方向, 如基于大语言模型的材料设计, 跨材料体系的预训练大模型构建. 本文重点介绍作者在小数据场景下开发的AI驱动的材料设计方法, 同时探讨材料数据与AI模型协同发展为材料科设计范式带来的转变.

基于力学超材料的柔性机械臂设计技术

摘要:以力学超材料为基础结构的柔性机械臂可通过力学超材料的调配设计实现多重弯曲运动。为探究该类柔性机械臂的变形特性,在分析柔性机械臂结构及其驱动原理的基础上,通过分段常曲率假设建立胞元组变形的数学模型,同时根据柔性机械臂单元的弯曲特性进一步提出了单节柔性机械臂单元和多节柔性机械臂单元的变形预测模型,最后通过实物实验验证了变形预测模型的有效性,完成了超过±90°的弯曲并对末端周围的环境进行探查,可应用于复杂狭小空间的检视。

金属材料表面纳米化研究与进展

摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3 种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。

增材制造专用陶瓷材料及其成形技术

摘要: 陶瓷材料具有高强度、耐磨损、耐腐蚀和耐高温等特点,在航空航天、生物医疗和电子信息等领域具有良好的应用前景。然而,如何制造应用于上述领域的复杂形状陶瓷零件成为了一个重要的问题。目前,增材制造正逐步成为解决复杂形状陶瓷零件制造问题的有效方式。主要介绍了增材制造专用陶瓷材料及其成形技术。根据增材制造专用陶瓷材料的不同形态,可以将陶瓷材料分为粉材、丝材、片材和浆料/膏材4类。基于此,介绍了激光选区烧结(SLS)、激光选区熔化(SLM)、三维喷印(3DP)、熔融沉积制造(FDM)、分层实体制造(LOM)、立体光固化(SL)、数字光处理(DLP)以及直写成形(DIW)8类主要陶瓷增材制造技术及其应用。最后,根据陶瓷增材制造的最新研究成果,对增材制造专用陶瓷材料及其成形技术发展作出进一步的展望。