透明超疏水材料的制备及其应用

摘要:超疏水材料由于其独特的非浸润性引起人们的广泛关注,近年来得到迅猛发展,各种适用于不同领域的功能性超疏水表面应运而生。其中,透明超疏水材料因其在光学领域的特殊贡献受到人们的青睐。透明疏水涂层技术对于实际应用具有重要的意义,透明涂层不仅可以满足光学器件防护的高透光率,还可以维持防护本体的基本外观,在自清洁、防污、防冰防雾、防腐蚀等领域都展示出广阔的应用前景。本文系统地阐述了超疏水表面以及其中功能性的透明超疏水表面的最新进展、表面的设计、制造和重要应用。尽管已经取得了重大进展,但是目前超疏水材料在耐久性方面还存在诸多问题,例如,容易被机械外力破坏、极端环境下表面的超疏水性质不稳定以及老化等问题,限制了透明疏水涂层技术的大范围应用。在未来的研究中,一方面继续丰富相关的理论知识,为透明疏水涂层技术的应用提供更多的理论支持,另一方面,提高涂层的透明度和机械耐久性能仍是未来研究的重中之重。

阻燃离子液体制备与应用研究进展

摘要:随着高分子材料科学技术的发展,已被广泛应用的塑料、橡胶等高分子材料因其阻燃性能差,容易引发火灾而受到越来越多的关注。阻燃材料具有耐高温、减少燃烧物产生、降低火焰传播速度和烟雾量的特性,离子液体(Ionic liquids,ILs) 由于其高热稳定性和气相阻燃、抑制自由基等反应能力,具有有效抑制火焰蔓延的特性,成为了新型的阻燃材料。因其阴阳离子的结构可调控性、环境友好性等特点,逐渐应用于阻燃领域。简要介绍了离子液体的种类,制备方法以及其阻燃机制,接着围绕离子液体在聚合物、纺织物与电子材料等各种高分子材料中的阻燃应用进行了详细介绍,最后对离子液体在阻燃应用方面的发展做出了展望。

碳基复合吸波材料

摘要:随着无线电波和电子信息技术飞速发展,电磁辐射污染问题日益突出,在全球范围内引起广泛关注。为了解决电磁污染问题,人们致力于研究与开发质量轻、厚度薄、频带宽和吸收强的电磁波吸收材料。与传统吸波材料相比,碳基复合吸波材料具有优异的介电性能、特殊的微观结构、良好的阻抗匹配以及高效的吸波性能,且可有效降低复合材料质量,在吸波材料领域拥有巨大的发展潜力,已逐渐成为研究热点。本文从阻抗匹配、损耗机制等方面概述了电磁波基本吸收原理,综述了碳-碳、碳-金属/金属氧化物、碳-陶瓷等不同种类碳基复合吸波材料的研究进展。同时,综述了上述碳基复合吸波材料的合成方法、吸波性能和衰减机制。最后,论述了碳基复合吸波材料在电磁波吸收方面存在的不足并提出了可能的解决方案,展望了碳基复合吸波材料未来的发展方向。

金属部件送丝增材制造工艺研究现状

摘要:相对比于传统的减法式制造,送丝增材制造是一种新兴的加工制造方法,在复杂的几何图形和贵金属的制造方面具有更好的应用前景。本文通过分析对比,阐述了当前主流的三种送丝增材制造技术的特点及国内外研究现状,着重阐述了工艺参数对成形件精度、组织和力学性能的影响。分析了现阶段送丝增材制造技术存在的问题,最后对送丝增材制造未来的发展方向进行了展望。

零热膨胀金属材料研究进展

摘要:随着科技的进步,人们对太空、海洋和地下资源的探索不断深化,需要在极端条件下运行的设备日益增多,对材料的热膨胀性能调控要求也越来越高。零热膨胀金属材料的尺寸在温度变化的环境中依然能够保持不变,这一特殊功能对于需要高精密、高稳定性的器件来说具有重要应用价值。本文总结了因瓦(Invar)合金被发现100 多年以来的零热膨胀金属材料的研究进展,从零热膨胀金属材料的定义、分类、发展历程进行综述,介绍了诱导金属材料零热膨胀的几种主要机制,同时列举了几类零热膨胀性能优异且应用价值高的金属材料,并对不同类型金属材料的晶体结构、零热膨胀性能和热膨胀调控方法等进行了阐述,讨论了磁性、相转变与热膨胀性能之间的耦合关系。最后对零热膨胀金属材料未来发展趋势进行了展望。

超浸润光热材料的构筑及其多功能应用研究

摘要:随着工业社会的不断发展,不同行业对于超浸润材料的功能提出了更高的要求,超浸润材料向多功能化或智能化转型成为其发展的必然趋势。同时,在人们对环境问题日益重视的背景下,符合环保可持续、高效、低耗的新技术受到关注,具有光热效应的超浸润材料作为实现油水分离、海水淡化及太阳能蒸发等领域的新兴产品而成为研究热点。本文首先介绍了近年来碳基、有机物基、半导体基及复合型超浸润光热材料构筑的研究现状并对其局限性进行了分析,然后梳理并详细论述超浸润光热材料在防覆冰、海水淡化、油水分离等领域的应用进展及其作用机理,进而总结了其目前制备过程中存在的环境危害性等问题,并对功能性与智能型超浸润光热材料的发展趋势及研究路线进行了展望。

聚合物先驱体转化陶瓷材料3D打印及其电磁波吸收性能

摘要:电磁波吸收材料在电磁污染、军事作战领域具有十分重要的意义。近年来,聚合物先驱体转化陶瓷(PDC) 由于其温和的制备条件以及优异的电磁波吸收、力学、耐温性、抗氧化性等性能受到研究者的广泛关注。为了实现PDC 复杂异型结构高精度成型,先进3D 打印技术逐渐在该领域得到广泛关注与应用。通过对先驱体聚合物的组成及结构进行设计和制备,能够得到具有宽频、高吸收或兼具多种功能的PDC 电磁波吸收材料,这为新型高性能电磁波吸收材料带来新的发展方向。本文首先对PDC 的结构特点及制备工艺进行了总结;之后,重点对PDC 的材料挤出3D 打印及光固化3D 打印研究进展进行了系统总结。最后,本文全面综述了PDC 在电磁波吸收领域的研究现状,并对未来发展方向提出展望,为今后PDC 吸波材料的研究提供了参考。

相变蓄冷材料研究进展

摘要:相变蓄冷材料具有储能密度高、相变温度可控、循环稳定性强的优点,成为目前最有发展前景的储能方式。文章对现有的相变蓄冷材料进行了分类,总结了不同类型材料的优缺点,重点介绍了国内外学者在固-液相变方面的研究进展,罗列了各种材料的热物性和化学特性,对其在医疗冷链、建筑制冷、生鲜冷冻等具体应用中的研究进行了阐述。在此基础上,针对目前相变蓄冷材料存在的导热率低、腐蚀性强、易泄漏和过冷度大等问题,文章提出相应的解决方案并阐述改善机理,对相变蓄冷材料的未来发展进行了展望。

压电陶瓷3D打印研究进展

摘要:压电陶瓷因具有压电性、介电性、弹性等,被广泛应用于医学成像、声传感器、声换能器、超声马达等领域。随着电子器件向着小型化、便携式发展,市场对小型且具有复杂几何形状的压电陶瓷的需求逐渐增大。采用传统技术制造的压电陶瓷虽能表现出良好的压电性能,但对于复杂结构的制造仍然存在挑战。增材制造技术是一种根据三维模型数据并采用材料逐层累加的方式直接制造出实体零件的先进制造技术。与传统制造技术相比,增材制造技术无需模具,可根据器件的形状设计并通过3D数字化模型直接制造实体零件,实现了零件“自由制造”,解决了许多复杂结构零件的成形问题,并大大减少了加工工序,缩短了加工周期。本文综述了当前增材制造技术在压电陶瓷制造中的发展现状,介绍了压电陶瓷在应用领域的研究进展,并对现阶段增材制造压电陶瓷技术的研究方向和前景进行了展望。

石墨烯及其衍生物在催化领域的应用

摘要: 石墨烯具有特殊的光、电、热和力学等特性,期待被广泛应用于不同领域中,成为新型基础材料。然而,石墨烯完美的蜂巢结构、单一的元素组成,不利于其在催化领域的应用,通过掺杂改性可以对石墨烯的结构和性质进行调控,使其在燃料电池、光催化、电催化等领域表现出优异的性能。我们综述了氧化石墨烯、还原石墨烯、掺杂石墨烯等改性石墨烯的合成、表征及其在催化领域的研究进展,并结合自己的研究提出展望。