基于狄拉克半金属的可调谐四频段太赫兹超材料吸波器

摘要:设计了一种基于三维狄拉克半金属(DSM)动态可调谐的四频段太赫兹超材料窄带完美吸波器,在3.4695、4.3829、4.5790、4.9885 THz 频率处实现4 个吸收率接近100% 的谐振峰。对谐振频率处的电磁场分布进行了数值研究,并结合阻抗匹配原理,定性地解释了吸收体完美吸收的物理机制。研究了单元结构尺寸和DSM 费米能级对吸波特性的影响规律,证明了谐振峰频率和吸收率均具有良好的可调性。进一步地,当吸波器的工作环境折射率由1.00 增加至1.16时,谐振频率红移且折射率响应灵敏度高达721.8 GHz·RIU−1。在法向入射下,表现出与极化无关的吸收特性。本研究为THz 吸波器及相关DSM 器件研制提供参考,同时在多波段光电探测、生物传感和光学滤波等领域中具有很大的应用潜力。

通风声超材料屏障研究进展

摘要:通风隔音技术能够在保持空气流通的同时有效阻隔噪音, 为建筑和工业应用提供舒适且健康的环境. 声学超材料作为一类通过精心设计其内部结构来实现特殊物理性质的人工声学材料, 凭借其独特的物理性质和亚波长尺寸的特点, 在通风声屏障领域取得了突破性的进展. 本文综述了该领域的最新研究进展和应用, 包括3种主要的物理原理: 局域共振型、干涉相消型和相位梯度型, 并探讨了从单频设计拓展至宽频设计的方法. 此外, 本文还介绍了在复杂应用场景下的新设计思路和优化方法, 如柔性材料的应用、主动型超材料, 以及人工智能和机器学习的设计优化. 未来, 随着技术的不断进步和跨学科的融合, 基于超材料的通风声屏障将在建筑、交通和工业领域发挥更大的作用, 为人类提供更加安静和舒适的环境.

金属材料表面纳米化研究与进展

摘要:大多数金属材料的失效都是从其表面开始的,进而影响整个材料的整体性能。研究表明,在金属材料表面制备纳米晶,实现表面纳米化,可以提升材料的表面性能,延长其使用寿命。金属材料表面纳米化是指利用反复剧烈塑性变形让表层粗晶粒逐步得到细化,材料中形成晶粒沿厚度方向呈梯度变化的纳米结构层,分别为表面无织构纳米晶层、亚微米细晶层、粗晶变形层和基体层,这种独特的梯度纳米结构对金属材料表面性能的大幅度提升效果显著。根据国内外表面纳米化的研究成果,首先对表面涂层或沉积、表面自纳米化以及混合纳米化3 种金属表面纳米化方法进行了简要概述,阐述了各自优缺点,总结了表面自纳米化技术的优势,在此基础上重点分析了位错和孪晶在金属材料表面自纳米化过程中所起的关键作用,提出了金属材料表面自纳米化机制与材料结构、层错能大小有着密不可分的联系,对金属材料表面自纳米化机制的研究现状进行了归纳;阐明了表面纳米化技术在金属材料性能提升上的巨大优势,主要包括对硬度、强度、腐蚀、耐磨、疲劳等性能的改善。最后总结了现有表面强化工艺需要克服的关键技术,对未来的研究工作进行了展望,并提出将表面纳米化技术与电镀、气相沉积、粘涂、喷涂、化学热处理等现有的一些表面处理技术相结合,取代高成本的制造技术,制备出价格低廉、性能更加优异的复相表层。

高熵陶瓷薄膜晶体结构、制备及其功能特性研究进展

摘要:高熵陶瓷薄膜是在高熵合金薄膜中掺入C、N、O等非金属元素形成的碳化物、氮化物、氧化物等性能更优异的薄膜材料。由于高熵陶瓷薄膜具有组分可调节空间大、熵效应独特及材料性能可调控等优点,因此高熵陶瓷薄膜无论是作为结构材料还是功能材料,都有望成为综合多种优异性能的薄膜材料。首先介绍了含有C、N、O等不同非金属元素的高熵陶瓷薄膜的晶体结构,并研究了改变晶体结构的影响因素。除了掺入薄膜中的C、N、O等非金属元素含量会对薄膜的晶体结构产生显著影响外,制备工艺中的工艺参数也会对高熵陶瓷薄膜的晶体结构产生影响。例如,随着基底温度的升高,高熵氮化物薄膜会由非晶结构转变为简单的FCC 固溶体结构。另外,基底偏压虽不能直接影响高熵陶瓷薄膜的晶体结构,但对薄膜的择优取向有着显著影响。综述了制备高熵陶瓷薄膜常用的技术,包括磁控溅射技术、脉冲激光沉积技术、真空电弧沉积等。综述了目前国内外研究者对高熵陶瓷薄膜的功能特性的研究进展,包括抗辐照性、扩散阻挡性、电催化性、磁学性、生物相容性等。最后总结了高熵陶瓷薄膜的应用,并指出了目前研究的不足,以及高熵陶瓷薄膜未来的研究方向。

人工智能在合成生物学的应用

摘要:生命系统极其复杂,难以精确描述和预测,这给高效设计合成生物系统提出了挑战,故在合成生物系统构建中往往须进行海量工程试错和优化。近年来,人工智能技术快速发展,其基于海量数据的持续学习能力和在未知空间的智能探索能力有效契合了当前合成生物学工程化试错平台的需求,在复杂生物特征的挖掘与生命系统的设计方面具备巨大潜力。该文回顾并总结人工智能在合成元件工程、线路工程、代谢工程及基因组工程领域的研究进展,并分析和讨论人工智能与合成生物学交叉研究在数据标准化、平台智能化、实验自动化、预测精准化方面存在的一系列挑战。人工智能和合成生物学的融合有望给“设计—构建—测试—学习”闭环的全流程带来变革,而孕育“类合成生物学家”也将反过来引起人工智能技术的飞跃。

多元成分的融合:软磁高炳合金的结构调控与磁特性研究

摘要:软磁材料是实现电子元器件上游配套关键产业技术突破的重要能源材料之一。高性能软磁材料的开发和研究对于节能、降耗和中国制造2025”实施等具有重要意义。高摘合金由于Fe、Co和Ni等磁性元素掺杂具有大的磁特性调节范围,因此高摘合金有望成为性能优异的软磁材料。着重综述了影响高摘合金磁性能的关键因素,强调了高软磁合金磁特性对化学成分、制备工艺参数和相结构非常敏感,同时明确了热处理是改善高熵合金微观组织,优化其磁性能的主要手段。此外,基于理论模拟方法从原子尺度阐释了影响高熵软磁合金磁特性的内在机制,进一步厘清了高摘软磁合金磁性与磁畴间的依赖关系。最后凝练了目前部分高摘软磁合金发展存在的科学问题,并简要概括了未来高熵软磁合金发展需要关注的方向。

电子材料新奇物性研究中的关键科学问题

摘要:基于国家自然科学基金委员会第298期“双清论坛”,本文介绍了5d电子相关材料的新奇物性以及相关材料体系的研究意义,从理论、制备、表征、器件四个主要方向回顾了这一研究领域的研究现状以及面临的主要挑战,并进一步提出了亟需关注和解决的重要基础科学问题和重点研究方向。

基于石墨烯的斜入射稳定超宽带吸波器

摘要:提出一种基于石墨烯-金属混合油墨的极化不敏感超材料吸波器,其在大角度入射下具有稳定的超宽带吸收性能。与传统吸波器的角稳定特性不同,所提吸波器的吸波性能随着入射角的增大得到改善。首先,采用中心对称的多层频率选择结构,获得了宽带吸收响应和极化不敏感特性;其次,设计了斜入射下结构最佳的阻抗匹配效果,并分析了其阻抗实部和虚部特性,实现了大角度入射下吸收性能变优的效果;最后,分析了所提吸波器的等效电路模型和不同入射角下的表面电流、传播电场分布。结果表明:该吸波器在正入射下吸收频带为3.7~18.3 GHz,相对带宽为132.7%;在55°斜入射下,吸收频带拓宽至4.4~28.6 GHz,相对带宽提升至146.7%,实现了斜入射吸收性能优化的设计目标。基于上述性能,所提出的超宽带大角度稳定的吸波器在光学、微波等领域中具有良好的应用前景。

硫族化合物SrPbSe2:具有潜力的新型热电材料

摘要:近年来, 开发高性能硫族热电材料对于提高能源转换效率和实现可持续能源利用具有重要意义. 本文基于密度泛函理论和玻尔兹曼传输理论, 全面探索了新型硫族化合物SrPbSe2的电子结构、力学、热传输、电传输和热电性能. 电子结构分析表明, SrPbSe2是一种窄带隙、直接带隙半导体. 弹性常数和声子谱计算表明, SrPbSe2是韧性材料, 具有力学和动力学稳定性. 此外, SrPbSe2中Pb2+的孤对电子6s2呈现立体化学活性, 使得Pb原子引起配位原子周围的晶格发生扭曲, 增强了晶格非简谐性. 结果表明, SrPbSe2的低热导率主要由八面体PbSe6局部晶格畸变引起Pb–Se弱键合和产生更多的声子散射中心所造成. 最后, 通过高通量筛选, 结合多种载流子散射机制, 评估了SrPbSe2的相关热电参数, 预测p型和n型SrPbSe2分别具有最大ZT值1.31和0.95.本文的研究结果为未来开发SrPbSe2基热电材料提供了一定的理论见解和指导.

碳化硼陶瓷自润滑研究现状

摘要:碳化硼(B4C)陶瓷的自润滑对其摩擦学性能具有重要影响,但缺乏这方面的系统性综述介绍。碳化硼具有高的硬度(维氏硬度为36 GPa),因此碳化硼陶瓷是一种应用于耐磨元件的潜在候选材料。然而,碳化硼陶瓷的摩擦因数较高,增加了摩擦系统的能耗,限制了其广泛应用。自润滑是一种可避免外部润滑剂造成污染的方法,揭示碳化硼陶瓷自润滑的机理可为解决碳化硼陶瓷摩擦因数高的问题提供可行参考方案。目前碳化硼陶瓷自润滑的方式主要有预氧化、添加固体润滑剂、构建表面浮雕结构三种。预氧化是将碳化硼陶瓷预先在空气环境中进行高温下氧化处理,使其表面生成氧化层;添加固体润滑剂是将具有层状晶体结构的材料添加到碳化硼陶瓷基体中,在滑动过程中固体润滑剂从碳化硼陶瓷基体中脱落,从而在碳化硼陶瓷的磨损面上形成一层外部润滑层;构建表面浮雕结构是在碳化硼陶瓷基体中引入硬度相对较低的第二相,利用两相晶粒的硬度差,在滑动过程中原位生成凹凸的表面形貌。这些自润滑方法虽然存在技术上的局限,但仍可在一定工况下实现碳化硼陶瓷的自润滑,减小摩擦副的摩擦因数,降低摩擦系统的能耗。总结近年来碳化硼陶瓷自润滑的相关研究进展,并对碳化硼陶瓷自润滑未来的研究方向进行展望,研究结果填补了碳化硼陶瓷自润滑领域目前缺少综述文章来引领的空白,可为碳化硼陶瓷自润滑的设计、研究及应用提供有益的指导。