深度学习辅助的纳米薄膜材料压痕力学性能反演与预测

摘要:准确高效地测定纳米金属薄膜的力学性能对于评价材料的服役可靠性至关重要。本文以人工智能技术与科学技术领域的交叉融合为驱动力,借助深度学习技术,利用试验和仿真中的数据信息,针对典型的包镍多壁碳纳米管增强烧结纳米银材料的纳米压痕力学性能表征问题开展研究。首先通过纳米压痕测试得到被测材料的载荷-位移曲线,并以此为基础进行有限元反演获得其幂指数型应力-应变关系。基于所提取的数据集和贝叶斯优化算法构建了人工神经网络(ANN)模型与卷积神经网络(CNN)模型,成功实现了对纳米薄膜材料压痕力学性能的高精度预测。结果表明,ANN模型计算效率较高,但因对应数据集关键参数较少所以预测效果较差;而CNN模型的预测效果良好且预测结果的决定系数为0.99,预测精度远高于ANN模型,其准确性和鲁棒性表现出巨大优势,很好地弥补了由于其效率低造成的性能短板。为测定航空工业中纳米金属薄膜的机械性能提供了一种通用方法,也为深度学习方法在预测其他材料的机械性能方面的应用提供了思路。

碳化硅原料粉体制备的研究进展

摘要:碳化硅(SiC)材料因具有优异的物理化学性能,已被广泛应用于航空航天、工程陶瓷和半导体等领域。目前,SiC 粉体的合成方法众多,其中碳热还原法是工业生产SiC 粉体的主要方法,但在生产过程中,SiC 粉体的颗粒度和杂质含量均会影响最终产物的各项性能。因此,如何对SiC 粉体进行细化和纯化处理成为制备高性能SiC 材料需要探索的问题。本文首先介绍了SiC 粉体合成技术的种类、原理和特点;然后,详细阐述了近年来SiC 粉体细化技术的研究进展,并对SiC 粉体中无定形碳和金属及金属氧化物的纯化技术进行重点介绍;最后分析了目前制备SiC 粉体需要解决的问题,并对其发展前景进行展望。

增材制造SiC基陶瓷及其强韧化研究进展

摘要:碳化硅(SiC)材料具有轻质、高强、热稳定性良好等优异特性,广泛应用于国防军工、航空航天、能源环保等诸多领域。然而SiC陶瓷在异形结构成形能力和成形性能方面相互制约。传统制造方法可获得高性能的SiC陶瓷件,但难以成形复杂结构。增材制造具有成形复杂结构的优势,但增材制造SiC基陶瓷存在高强和高韧一体化成形性能的挑战。因此,研究高精度、高强度、高韧性的SiC 基复杂结构陶瓷的增材制造具有重要意义。本文系统性总结当前SiC基陶瓷的增材制造原理与方法,并对连续纤维、短切纤维/ 晶须、夹层结构增韧增材制造成形SiC基陶瓷等的问题和难点进行分析与讨论。最后针对SiC 基陶瓷增材制造的发展趋势进行展望,希望为推动大尺寸、跨尺度、复杂结构的SiC基陶瓷部件高精度、高强度、高韧性一体化增材制造成形提供参考。

压电陶瓷3D打印研究进展

摘要:压电陶瓷因具有压电性、介电性、弹性等,被广泛应用于医学成像、声传感器、声换能器、超声马达等领域。随着电子器件向着小型化、便携式发展,市场对小型且具有复杂几何形状的压电陶瓷的需求逐渐增大。采用传统技术制造的压电陶瓷虽能表现出良好的压电性能,但对于复杂结构的制造仍然存在挑战。增材制造技术是一种根据三维模型数据并采用材料逐层累加的方式直接制造出实体零件的先进制造技术。与传统制造技术相比,增材制造技术无需模具,可根据器件的形状设计并通过3D数字化模型直接制造实体零件,实现了零件“自由制造”,解决了许多复杂结构零件的成形问题,并大大减少了加工工序,缩短了加工周期。本文综述了当前增材制造技术在压电陶瓷制造中的发展现状,介绍了压电陶瓷在应用领域的研究进展,并对现阶段增材制造压电陶瓷技术的研究方向和前景进行了展望。

高熵氧化物气凝胶的研究进展

文摘:介绍了高熵氧化物气凝胶的发展状况,对高熵氧化物气凝胶的合成方法、结构性能及其应用进行总结归纳,提出了采用理论模拟和实验结合研究高熵氧化物气凝胶的耐温机理将是重要的发展方向。

石墨烯层间原位生长碳纳米管薄膜制备及其导热性能研究

摘要:随着电子器件的集成化程度越来越高, 对热管理材料的导热性能提出了更高要求。石墨烯具有很高的面内导热系数, 由石墨烯微片堆叠而成的石墨烯薄膜面内方向具有较高导热性能, 但是其厚度方向导热性能较低。碳纳米管与石墨烯有相同的元素组成和相似的晶体结构, 碳纳米管轴向热导率很高。本文通过将氧化铝颗粒、催化剂二茂铁和碳源PMMA 同时引入氧化石墨烯薄膜层间,在氧化石墨烯薄膜热还原的同时, 原位生长碳纳米管,形成含氧化铝颗粒、一维碳纳米管和二维石墨烯三种材料和多维结构石墨烯复合薄膜。其中, 二维石墨烯片提供高的面内导热性能, 沿石墨烯膜厚度(层间) 生长的一维碳纳米管提供较高的厚度方向导热性能; 氧化铝颗粒作为高导热填料, 填充石墨烯薄膜的层间间隙,连通石墨烯片导热通道; 同时,氧化铝颗粒作为碳纳米管高效原位生长的衬底,显著提高碳纳米管的生长效率, 提高碳纳米管含量, 显著提高石墨烯膜的导热性能。研究结果表明, 厚度为50μm的还原氧化石墨烯复合薄膜的面内导热系数达1006±32W/mk、厚度方向导热系数达7.30±0.16W/mk。

适用于硅胶基材的可拉伸导电油墨的研究进展

摘要:印刷电子正逐渐从柔性电子向可拉伸电子方向发展,开发平面的可拉伸导体对可拉伸电子具有重要的意义。快速制备柔软的但有一定强度的可拉伸导体的方法是将导电材料与弹性聚合物复合形成导电油墨并印刷在弹性基材上。基于硅胶的弹性基材具有良好的生物相容性、热稳定性和化学稳定性,弹性接近皮肤,被用于表皮电子器件、智能软体机器人、可穿戴电子器件等。鉴于硅胶表面非极性的特性,为实现印刷的墨层与硅胶表面之间高的粘附牢度,对印刷油墨提出较高要求。本文重点介绍了两类用于硅胶基材的可拉伸导电油墨且将其进行对比,并分析了印刷后图案的后处理方式对拉伸性的影响。指出采用非极性连结料并选择相容性好的导电组分制备导电油墨是硅胶基材上印刷可拉伸电极的关键;复合不同导电组分、在墨层中引入多孔结构、氙灯烧结有利于提升硅胶基可拉伸电子器件的性能。

可穿戴电子用前驱体型银墨水研究进展

摘要:可穿戴电子往往具有体积小、质量轻、柔韧性好等特点,而电极柔性化可以有效提高可穿戴电子佩戴时的舒适性、安全性和准确性。喷墨印刷技术作为一种新型的电子器件制造方法,具有成本低、精度高以及速度快等优点,是制备柔性电极的极佳选择。导电墨水的开发是印刷柔性电极中最为关键的一个环节,从根本上决定薄膜的印刷质量和功能。本文对适用于可穿戴电子的前驱体型导电银墨水的研究进行了综述,主要从墨水的关键组分银前驱体出发,重点关注了前驱体型银墨水的配制、后处理以及在可穿戴电子领域的最新进展,并对可穿戴电子用前驱体型银墨水的发展方向进行了展望。

高灵敏、强粘附性导电水凝胶的制备及在柔性传感中的应用

摘要:导电水凝胶由于优异的韧性与生物相容性,在人机交互、电子皮肤领域有良好的应用前景,然而在实际的应用场景中为了得到准确响应的信号则需要更优异的粘附性和灵敏度。本工作以2-丙烯酰胺-2-甲基丙磺酸(AMPS)和丙烯酰胺(AM)共聚制备了导电水凝胶材料,该水凝胶在紫外光照条件下通过巯基攻击碳碳双键快速聚合。其对猪皮肤的粘附强度达到525kPa,对铝片的粘附强度高达817kPa。区别于传统的制备方法,本工作在不添加任何导电填料的条件下所制得水凝胶的电导率达到1.08S/ m,且灵敏度因子(GF)达到9.28,避免了因导电填料分散不均而导致的力学性能差且灵敏度不高的问题。此外,该水凝胶有良好的抗冻性,即使在-60℃的条件下仍能正常工作。得益于高灵敏度和强粘附性,P(AMPS-co-AM)水凝胶可组装成柔性应力或应变传感器精确地检测人体不同部位的微小与大幅度动作,具有准确响应性和良好稳定性,在电子皮肤及柔性可穿戴设备领域有很大的应用潜力。

人工模拟酶的构建策略、分类及应用

摘要:人工模拟酶与天然酶具有相似的催化活性,兼有可调节性、稳定性、再生性和易于大规模制备等优点,在催化、分析检测、药物生产和能源开发等领域具有广阔的应用前景。本文根据天然酶结构、催化机制以及现有模拟酶的特点,阐述了模拟酶构建的基本策略,包括底物结合位点的构建以及催化基团的引入,分析了不同构建策略的特点,论述了相关的技术途径。根据模拟酶载体的不同,分别介绍了多肽模拟酶、纳米材料模拟酶和超分子模拟酶,并对各类模拟酶的催化机制和未来发展趋势进行了分析和展望,简述了它们在痕量物质分析、生物医学以及环境保护等方面的应用。本文为模拟酶的研制提供了理论参考,也为模拟酶的推广应用提供了技术支撑。