新型镍氧超导体的理论研究

摘要:高压下双层镍氧超导体的发现引发国际上广泛的关注,理论研究发挥很大的作用。目前,理论计算表明La3Ni2O7中镍的2个eg轨道对超导的产生起到关键作用,同时氧的p轨道也出现在费米面上,相应的多轨道模型已经提出。各种计算表明,新型镍氧超导体可能具有s±波的特性,对其进行掺杂或加压可以改变超导配对特性。基于强关联相互作用的模型,已经能够较好地解释实验观测的现象。顶点氧空位的存在对于超导的发生会有明显的影响。三层镍氧超导体的发现进一步丰富了镍氧超导体的家族,目前其电子能带结构、多轨道模型、超导配对对称性等都有理论探究。

氧化铝陶瓷增韧的研究进展

摘要:作为研究最早和应用最广泛的陶瓷材料之一,氧化铝(Al2O3) 陶瓷具有高强高硬、耐高温、耐磨损、耐腐蚀等许多优异特性,已在国防工业、航空航天以及生物医疗等领域得到了广泛应用。然而,固有的脆性极大地限制了Al2O3 陶瓷在众多领域中的进一步应用。增韧始终是陶瓷材料研究中的一个核心研究课题,引入增韧相材料是提高陶瓷材料韧性的主要途径。本文首先简要概述了陶瓷材料的增韧机制,随即综述了Al2O3 陶瓷增韧的最新研究现状,分析了增韧方法中存在的关键问题,展望了Al2O3 陶瓷增韧的发展方向,以期为后续Al2O3 陶瓷增韧的发展提供借鉴。

微波能强化膜材料制备与膜分离过程

摘要:微波能在化工领域的创新应用是化工电气化研究的热点趋势之一,涉及加热、工业废水处理、矿物除杂、有机催化、材料合成及医药灭菌等多个方向。微波作为一种外场强化手段应用于膜分离技术,不仅可以缩短膜材料制备时间,降低生产成本,还能提高渗透通量,强化膜过程的分离性能。本文通过总结微波在制备分子筛膜(MOF、MFI型、NaA型等)、聚合物膜、混合基质膜等膜材料的典型应用优势,发现微波的引入可以使制备出的膜材料通量及选择性更高,这是因为分子筛膜的晶体大小更加均匀,晶体取向更加一致,膜层可以更薄、缺陷减少;使聚合膜的聚合率增大,表面更加光滑,内部结构更加规则;使混合基质膜的机械性能更好。阐述了微波技术在不同类别的膜材料制备应用中的强化机理,其中:在分子筛等无机膜制备中,微波可以降低有效活化能,调控晶体粒径,诱导晶体取向;在聚合物膜的制备过程中,微波可以改变膜结构,改变传热方向,增加聚合接枝率,降低反应活化能。归纳了微波提升膜材料在气体和液体分离方面性能的研究,考虑到该领域基础研究较少,根据微波的独特加热优势,提出选择性汽化、诱导氢键减弱、局部过热、诱导生成纳米气泡及分子扰动5个可能的微波强化膜分离机理,利用微波加热在膜分离中的补偿温度极化、减少膜污染、降低浓度极化,有望实现膜选择性和渗透通量的同步提升。

超构透明吸波体的研究前沿与展望

摘要:吸波材料在电磁隐身技术中发挥着至关重要的作用. 与非透明材料相比, 透明材料实现电磁吸收面临更复杂和独特的挑战. 经典透明吸波体在光学透过率、厚度、电磁吸收带宽、倾角与极化稳定性等多项指标存在难以调和的矛盾. 随超构材料应用于透明吸波体, 上述核心性能指标得到显著改善, 从而促进了其在电磁隐身领域的实际应用. 本文针对超构透明吸波体研究工作进行了综述, 首先介绍了透明吸波体的光学透明与电磁隐身原理, 并对经典透明吸波体工作原理与局限进行分析与总结. 随后对超构材料改善透明吸波体在宽带电磁吸收、倾角与极化稳定性经典性能的研究进展与设计方法进行了总结. 为预示未来发展方向, 本文详细阐述了近年来透明吸波体在混合机制设计、多光谱设计、动态可调性能的技术原理与研究前沿, 并展望了新兴方向为透明吸波体带来的多机制、多功能、智能化的发展机遇.

高熵合金纳米颗粒研究进展

摘要:当高熵合金细化至纳米尺度时, 其独特的结构与纳米尺寸效应间的相互作用将赋予材料优异的功能特性.然而, 由于异种元素间普遍存在的混合焓差异, 将多种非混相金属稳定结合并细化至纳米尺度具有极大的理论和技术挑战. 因此, 本文主要综述了近年来高熵合金纳米颗粒的研究进展, 首先系统总结了高熵合金纳米颗粒的制备方法、合成条件以及进一步提升合金体系固溶组元数量的策略, 随后从高熵合金纳米颗粒所具备的结构稳定性、氧化还原行为及异常尺寸效应等独特性质出发, 对其在催化、电磁、光热、气敏和储能等领域的应用及性能机理进行了详细的分析和讨论. 最后, 总结展望了高熵合金纳米颗粒未来面临的挑战和发展方向.

晶格结构可打印性研究现状

摘要:晶格结构因其复杂多变的结构呈现出多种优异的电、磁、声学、热学和机械性能,在航空、航天、汽车、建筑和生物医学行业显示出较大的市场前景,而晶格结构的制造难度大是制约其快速发展的一大难题,增材制造技术为晶格结构制造带来了便利。本文主要总结分析了晶格结构的设计、打印原材料和打印过程中参数对结构可打印性的影响,分析得出晶格结构的可打印性受晶格类型、相对密度、支柱倾斜度、粉末类型和打印参数的影响,最后提出了提升晶格可打印性的未来发展方向。

新型石墨烯复合材料在金属防腐蚀领域的研究进展

摘要: 介绍了石墨烯复合材料的防腐蚀原理,总结了国内外石墨烯和氧化石墨烯防护膜在金属防腐蚀领域的研究现状及存在的问题。简要介绍了改性石墨烯复合涂层的制备工艺及其效果。从无机纳米氧化物/石墨烯复合材料、聚苯胺/石墨烯复合材料、聚氨酯/石墨烯复合材料和硅烷/石墨烯复合材料等四方面综述了改性石墨烯复合材料在金属防护中的应用,指出目前我国石墨烯复合材料存在的主要问题,并对石墨烯复合材料在金属防腐蚀领域的研究方向进行了展望。

金属材料表面超疏水涂层研究进展

摘要:金属材料普遍存在腐蚀现象,这限制了金属资源的综合利用。近年来,受到自然界超浸润现象的启示,超疏水涂层作为一种新型金属防护手段,已得到广泛应用。本文对超疏水表面的基础理论进行阐述,重点综述镁合金、铝合金、碳钢、钛合金表面超疏水涂层近期的发展状况,以期为开发新型功能材料,推动相关技术进步,促进多领域的交叉应用提供参考和指导。

黏结剂喷射打印技术研究现状与发展趋势

摘要:黏结剂喷射(binder jetting, BJ)是一种将液态黏结剂喷射到粉末材料层上,选择性黏结粉末成形,随后进行致密化处理的增材制造技术。近年来,BJ技术因其高效率、低成本、适用材料范围广而受到广泛关注和研究。在BJ打印过程中,粉末特性、黏结剂及其与粉床的相互作用、打印参数等因素对生坯质量和性能有至关重要的影响。此外,烧结过程是影响最终部件质量的关键因素之一。本文总结了BJ打印的影响因素,提出可借助机器学习辅助坯体质量和烧结收缩预测,实现控形控性。目前,BJ技术正在推向汽车、医疗器械等行业。未来,BJ技术大规模应用的关键在于提高生坯质量和精度、增强黏结剂与坯体的结合强度、优化后处理工艺等方面。

摩擦纳米发电机在收集蓝色能源上的应用与研究

摘要:为了减少碳排放,保护生态环境,人们对海洋资源的开发和研究愈发深入, 可再生能源收集技术是该领域研究的重点。其中,摩擦纳米发电机是利用接触电气化现象的最有前途的机械能收集器之一,其具有可利用的机械能资源丰富、材料可得性和可选性广、器件结构相对简单、加工成本低等诸多优势。最近10年,世界各地研究人员在这一领域的研究取得了巨大进展。本文综述了近年来应用于摩擦纳米发电机(TENG)上的各种新型摩擦电材料,介绍了摩擦电材料的选取规则,并总结了对摩擦电材料进行物理表面修饰、化学表面修饰和其他相关改性方式,最后归纳了用于收集蓝色能源的摩擦纳米发电机装置的仿生结构的设计研究进展,并对未来的应用和发展方向进行了展望。