氢能产业链及储运技术研究现状与发展趋势

摘要:在积极应对全球气候变化、加快绿色低碳发展的大背景下,氢能作为能源载体和潜在燃料而备受关注,其与化石燃料不同,可以真正实现碳中和。围绕氢能输送与应用,分析氢能全产业链:制备、储存、输送、加注以及终端应用一系列工艺的研究现状,梳理氢能输送及应用涉及的关键技术问题,明确未来发展趋势并提出建议。分析表明:国内外针对氢能应用相关技术的研究已取得一定进展,但受限于技术成本及安全性等瓶颈因素,氢能暂未得到大规模应用。未来,应针对氢能产业链关键环节开展核心技术攻关,加速氢能产业发展,实现经济、安全、高效的氢能供给。

钠离子电池合金化负极材料研究及应用进展

摘要:钠离子电池凭借钠资源丰富、分布广泛、价格低廉的优势在大规模储能领域具有重要的应用前景, 可与锂离子电池形成优势互补。负极材料是电池化学的关键组成, 其能量密度、使用寿命等直接影响着电池性能。合金化材料具有理论比容量高、工作电压适宜等优势, 被认为是一类有应用潜力的储钠负极。然而, 这类材料发生合金化反应时体积膨胀严重, 电极材料易粉化脱落, 造成电化学稳定性欠佳。目前, 主要通过材料微纳结构设计、界面化学调控、碳材料复合、表面包覆、电解液优化等方法来改善其电化学性能。本文综述了合金化负极材料的最新研究进展, 探讨了其发展面临的瓶颈以及解决方案, 介绍了基于合金化负极的钠离子全电池构筑策略和应用实例, 为高性能钠离子电池的发展提供一定参考依据。

钠离子电池碳负极材料的研究进展

摘要:钠离子电池具有资源丰富和成本低等优势, 在大规模储能领域受到广泛的关注。开发具有高比容量和长循环稳定性的电极材料是钠离子电池走向应用的关键. 碳材料作为钠离子电池的负极材料, 具有可调控性高与稳定性好等优势, 具有应用潜力。目前, 研究较为广泛的碳材料主要包括石墨、无定形碳、杂原子掺杂碳、生物质合成碳, 但这些碳负极材料存在着钠-石墨化合物热力学不稳定、较大的体积变化以及初始库伦效率低等问题,制约了钠离子电池的发展与广泛应用。通过对碳材料的结构进行修饰改性及将其与电解液进行匹配, 可以有效提升其储钠性能。本文对这几类碳材料的结构特点、电化学性能、储钠机理、面临的问题、改进方法以及商业化前景进行总结, 为钠离子电池碳负极材料的发展提供新见解。

石墨烯纳米筛: 基础和应用研究

摘要:石墨烯纳米筛材料是当前科技前沿中一种新型二维多孔材料,其平面多孔结构有利于电解质离子的纵向传输,缩短了离子传输路径, 有效避免了传统石墨烯材料普遍存在的问题,如π-π堆叠造成活性面积低、纵向传输性能差、离子传输路径长和电解液不易浸润等,在能量存储与转换领域中表现出比传统石墨烯基材料更为优异的性能。本文综述了近几年来各种结构可定制、结构/组分复杂性高、形态可控制、电化学性能增强的石墨烯纳米筛材料的合理设计和合成的研究进展,着重讨论了石墨烯纳米筛的结构设计对能源存储与转换方面的性能影响,期望为高性能能源存储与转换方面进一步的创新工作提供参考。

“双碳”背景下新能源固态电池材料理论设计与电池技术开发进展

摘要:由于可充电锂金属电池(LMBs)具有较高理论能量密度,在便携式电子设备、电动汽车和智能电网等方面有重要应用。以固态电解质和锂金属负极组装的固态电池(ASSBs)具有高安全性,被认为是可提高电池能量密度和有效解决安全问题的一种有前景的电池技术。然而,LMBs在实际实施过程中仍面临许多挑战,如库仑效率低、循环性能差和界面反应复杂等。深入分析ASSBs 的物理基础和化学科学问题对电池开发具有重要意义。为了证实和补充实验研究机理,理论计算为探索电池材料及其界面的热力学和动力学行为提供了一种强有力的支撑,为设计综合性能更好的电池奠定了理论基础。本工作论述了理论计算方法在电池关键材料计算中的应用和研究意义;综述了硫化物固态电解质中Li10GeP2S12 (LGPS)及银硫锗矿体系的理论和结构设计思路,包括锂离子的输运机理和扩散路径。分析了新型反钙钛矿Li3OCl 和双反钙钛矿Li6OSI2电解质体系的理论设计思路。综述了氧化物固态电解质体系在缺陷调控下锂离子的输运机理。此外,本工作针对新型卤化物电解质体系的理论设计也进行了介绍。介绍了计算材料学在电池材料性能研究中的作用:借助理论手段分析离子传输机制、相稳定性、电压平台、化学和电化学稳定性、界面缓冲层和电极/电解质界面等关键问题;理解原子尺度下的充放电机制,并为电极材料和电解质提供合理的设计策略。总结了固态电解质和ASSBs电极与电解质间界面的理论计算的最新进展。最后,对ASSBs理论计算的不足、挑战和机遇进行了展望。要点:(1) 论述了固态电池材料的理论设计方法,包括电池的容量、离子电导率、相稳定性及电压平台。(2) 综述了几种常用的硫化物固态电解质体系的理论设计方法。(3) 利用理论计算构建界面模型,详细分析了电解质与电极间的界面工程问题。(4) 介绍了目前先进的组装固态电池技术以及制备薄膜电池的工艺流程。

钠离子电池层状氧化物正极材料改性研究进展

摘要:由于储量丰富、价格低廉及安全环保等突出优点,钠离子电池(SIBs)被认为是大规模储能应用的主要候选技术之一,而正极材料的开发也决定了钠离子电池的商业化进程和最终性能。钠离子电池层状氧化物正极材料,具有比容量高、构造简单、稳定性好等优势,是最富有前景的钠电正极材料之一。但此类材料目前仍面临电化学过程的不可逆变化、空气中储存不稳定和界面稳定性较差等问题,严重制约着钠离子电池商品化进程的发展。为了解决材料所存在的这些问题,研究人员对其进行改性优化。据此,本工作综述了钠电正极材料层状氧化物离子掺杂、表面包覆、纳米结构设计、P/O 混合相等改性措施所取得的成效,为钠电正极材料层状氧化物改性研究提供了基础,并对层状氧化物的后续发展趋势进行了展望。要点:(1) 层状氧化物型正极材料具有理论容量高、解吸附钠能力优且易于大规模合成等特点,成为商用化钠离子电池极富吸引力的候选主材之一。(2) 针对当前层状氧化物型正极材料突出的多级相变及界面稳定性问题,从多角度综述了当前的改善优化进展。(3) 对未来层状氧化物型正极材料的持续优化方向进行了展望,并提出多种策略协同优化的发展前景。

面向“双碳”目标流程的离子膜电渗析:机遇与挑战

摘要:逐渐加剧的温室效应以及高盐废水的大量排放给环境带来了很大的负担,碳达峰和碳中和政策要求形成绿色生产生活方式以及加强对资源综合利用,这对实现碳减排具有积极指导作用。而选择对高盐废水进行资源化回收的方式以及开发高效的碳捕捉技术有利于增强碳减排过程。离子膜电渗析因其独特的分离特性可实现对高盐废水的浓缩淡化、分离回用。为了降低温室效应,可采用淡化回收高盐废水和高效捕捉CO2相结合的方式降低CO2浓度,实现碳达峰和碳中和的目标以及对废水的零排放。本工作综述了以离子膜电渗析为基础的传统电渗析、双极膜电渗析、反向电渗析、置换电渗析、选择性电渗析和冲击电渗析等六种电渗析技术的工作原理,以及他们在碳捕捉转化和废水资源化方面的应用进展。展望了新型离子膜电渗析在处理高盐废水的应用前景,同时指出新型离子膜电渗析技术在降低碳排放方面的限制与挑战,最后为新型电渗析技术实现低碳排放提供新思路。要点:(1) 提出具有独特分离特性的离子膜技术有助于响应“双碳”政策。(2) 主要介绍以离子膜为基础的六种电渗析技术的工作原理和应用进展。(3) 展望新型电渗析技术处理高盐废水和实现碳减排的应用前景。(4) 指出新型电渗析技术在实现碳排放方面的限制和挑战

CO2管道输送技术进展与未来发展浅析

摘要:二氧化碳管道运输技术是二氧化碳捕集技术和利用技术的纽带,连接着起源地和储存地,可以持续不间断地输送二氧化碳,经济效益高、性价比高,符合可持续发展的准则,其中超临界输送是未来二氧化碳管道输送的主要方式。从管道输送的原理、国内外CO2管道输送技术现状、国内外CO2管道安全输送控制技术研究以及典型CO2管道输送示范工程四个方面入手,系统、具体地介绍了CO2管道运输的发展,同时展望了未来发展的趋势。

镁基固态储氢材料研究进展

摘要:镁基储氢材料具有储氢量高、镁资源丰富以及成本低廉等优点,被认为是极具应用前景的一类固态储氢材料。利用镁基储氢材料供氢主要有热分解放氢和水解产氢2种途径。MgH2的热分解放氢焓值高(75 kJ/mol H2),造成其放氢温度较高、动力学差;MgH2的水解过程中,由于常温水解产物Mg(OH)2逐渐包裹在MgH2表面,阻隔了MgH2与水的接触,从而导致水解产氢效率较低。近年来,大量研究工作聚焦于改善MgH2的热解/水解供氢性能及实际应用,已经取得了大量成果。针对目前国内外镁基固态储氢材料的研发,总结了材料/结构改性、反应条件对镁基储氢材料的热解/水解性能的影响,重点阐述了固态镁基储氢材料组成成分-微观结构-储放氢性能之间的关系,并对镁基储氢系统及实际应用场景进行了归纳。未来通过镁基固态储运氢技术的发展,将实现氢气的高安全、高效及大规模储运,助力中国氢能产业的发展。

复合型能源电池研究进展

摘要:与摩擦纳米发电机(TENG)单纯收集环境机械振动能量相比,与TENG相结合的新型复合能源电池能够收集多种形式的能量,具有更宽的工作频率范围和更好的输出性能。近年来,复合型能源电池逐渐向小型化、便携化、智能化发展。分别从TENG与太阳能电池、电磁发电机、压电纳米发电机、多种类型发电机以及其他能源电池相结合等几个类别,综述了复合型能源电池在工作模式、结构、能量输出、应用等方面的研究进展,讨论了复合型能源电池面临的挑战。对其发展前景进行了展望,认为复合型能源电池需要进一步在集成化、大功率、长寿命等方面深入开展研究。