锂离子电池负极材料的研究进展

摘要:锂离子电池因其较高的能量密度、良好的安全性能和优异的循环性能而受到广泛关注。目前,为了满足不断增长的储能应用需求,人们在开发具有更高电化学性能的锂离子电池负极材料方面做了大量的研究工作。根据锂离子电池负极材料在充放电过程中发生的电化学反应机制不同,分别详细介绍了嵌入型负极材料(石墨、TiO2、钛酸锂等)、转化型负极材料(Fe2O3、NiO等)和合金化负极材料(Si、Ge、P等)的电化学反应机制及其优缺点,重点阐述了不同负极材料的提高电化学性能方法和策略。可为锂离子电池负极材料的构建和性能优化提供重要的参考价值。

海上风塔用钢国内外研究现状及发展趋势

摘要:我国海岸线长达18万km,海上风能资源技术开发潜力巨大。近年来,在“双碳”的大背景下,我国风电行业政策利好不断,海上风电装机容量在电网中所占的比重快速上升,海上风塔用钢需求增长态势明显。随着海上风电进一步向集群化、大型化和深海化发展,如何开发出与之适配的低成本、综合性能优良的海上风塔用钢已成领域内亟待解决的关键性问题。介绍了国内外海上风塔用钢的标准、分类及性能要求,并对其化学成分设计和生产工艺方面的研究现状及发展趋势进行了综述。

锂硫电池回顾与最新发展

摘要:锂硫电池具有比容量高、生产成本低及环境友好等特点,是一种高能量密度的储能系统,在便携式电子设备储能中有巨大的发展潜力与应用前景。然而,锂硫电池在实际应用中仍面临着库仑效率低和寿命短等问题。这主要归因于多硫化物穿梭效应、S8 和Li2S 电导率低和锂枝晶生长不可控。抑制锂枝晶生长和阻止可溶性多硫化物与锂之间的反应不仅能增强锂硫电池的安全性和电化学性能,对高容量锂硫电池也至关重要。本文全面回顾了锂硫电池发展,着重介绍了高硫负载锂电池所取得的进展。通过分析机理了解锂硫电池的运作机制进而制定改进方式,包括对阴极使用分级多孔碳并进行元素掺杂以增加活性物质硫负载率,减少多硫化物的穿梭效应。还介绍了液态和固态电解液系统的发展以及增强阳极稳定性的各种策略。深入了解锂硫电池机理能加强对锂硫电池认知,可以指导高硫负载锂硫电池未来的发展。同时,提高各组件之间协同作用可进一步推动锂硫电池技术从纽扣电池和软包电池到随后的商业化规模应用。

镁空气电池阳极材料的研究进展

摘要: 镁空气电池由于低成本、高能量密度、高电化学当量等优点,在绿色清洁能源中备受关注。镁空气电池的研究发展仍受到极大阻碍,主要原因在于镁合金在应用过程中存在电池放电电压低、阳极利用效率低、自腐蚀速率大等问题。造成这些问题的原因在于镁合金本身存在的负差数效应、放电产物钝化、合金组织不均匀等。围绕镁空气电池阳极材料,首先对镁合金的阳极反应机理和存在的问题进行了总结,然后分别从合金化、塑性加工工艺、热处理工艺三方面综述了镁合金电化学性能的改善方法,最后展望了镁空气电池阳极材料的未来发展方向。

锌电积用新型阳极的研究进展

摘要:铅阳极价格低廉且在酸性硫酸盐溶液中稳定而被用于生产高纯度的锌,但随着矿物品位降低,锌电解液环境变差,传统铅阳极的许多问题限制了其进一步发展,包括析氧电位过高、阳极溶解引起的阴极产品污染、力学性能差等。为解决这些问题,从几个不同方面对新型阳极进行阐述:(1)在铅合金中掺杂不同的元素(如Ag,Ca,Co,RE等),通过外加物质改善合金结构,提升铅阳极电催化活性,降低铅在电解液中的溶解;(2)应用不同加工工艺提升铅合金内部均匀致密程度,提升合金力学性能;(3)应用其他类型的阳极,如钛基阳极、铝基阳极、碳纤维阳极等防止铅合金本身性质带来的问题。介绍不同阳极改进方式的同时也提及了其制备工艺和电催化机制,为未来新型阳极的发展趋势指明了方向。

车载高质量密度固态储氢材料研究进展

摘要:高密度储氢是制约氢燃料电池汽车发展的技术瓶颈之一,相较于高压气态和低温液态等储氢方式,固态储氢体积储氢密度高、安全性好,发展前景良好。分析和总结了燃料电池电动汽车的应用对车载固态储氢的技术要求,包括固态储氢材料的储氢密度、吸放氢动力学、热力学、可逆性、循环寿命、成本以及安全性等;介绍了氢化镁、硼氢化物、铝氢化物、氨基化物等高密度储氢材料的储氢原理及其优缺点,综述了纳米化改性、催化剂改性、元素掺杂改性和构筑复合储氢体系等改善高密度固态储氢材料性能方法,重点评述了采用不同改进措施的氢化镁、硼氢化物、铝氢化物、氨基化物的研究进展。通过分析对比不同体系以及不同改进措施下的固态储氢材料及其性能,总结出研发采用轻质多孔框架材料并配合高效轻质催化剂的复合材料,是改善固态储氢性能的有效途径。

碳基负极材料储钾应用及机制研究进展

摘要:因钾资源储量丰富,价格低廉,且具有类似于锂的物化特性,钾离子电池(KIBs)的推广应用可解决当前锂离子电池供不应求的问题。比较钠离子而言,钾离子可在商业化石墨负极中可逆嵌脱,这对于钾离子电池的产业化发展具有重大意义。然而钾离子因尺寸较大,嵌脱行为缓慢,引起的体积膨胀剧烈,成为电极材料面临的共性问题。近年来,为寻找具有良好嵌钾能力的材料,多种类型的电极体系被开发出来,其中碳基材料因制备简单、廉价环保、稳定性好的特点,被视为最具储钾前景的关键材料。本文系统概述了几种代表性碳基负极材料(如石墨、石墨烯、硬碳、软碳)在KIBs中的研究现状,阐述了各自存在的优势与不足;重点探讨了碳基材料的储钾机制,分析了由钾离子插层、吸附、填充行为组成的3种储钾机制及对电化学性能的影响,并指出在电极表面发生的离子吸附和填充方式呈现出电容效应,更适合于高性能的可逆储钾。最后,对KIBs的下一步研究方向和应用前景进行展望。

水系锌离子电池钒基正极材料储能机制、存在的问题及其改性策略

摘要:中性或弱酸性体系下的水系锌离子电池(AZIBs)因高安全、低成本及高能量密度等特性成为近年来研究的热点。其中,备受关注的钒基化合物具有比容量高、结构灵活多样等优点在AZIBs领域展现出了广阔的市场应用前景。主要总结了钒基材料的4种反应机制并叙述了钒基正极材料在AZIBs中的研究进展, 在AZIBs中,Zn2+有着较大的离子半径,随着循环的进行Zn2+不断嵌入/脱出, 引起材料结构的变化,从而导致活性物质从导电集流体上脱落,严重影响电池的循环寿命; 钒基材料本身的导电性能较差,不利于电子的转移;钒基材料在AZIBs中的电压窗口比较窄。针对这些问题,主要从离子和分子预嵌、表面修饰和复合材料制备、缺陷设计及金属离子掺杂、自支撑电极结构设计、电解液优化等5个方面进行了总结,并对未来AZIBs钒基正极材料的研究方向进行了总结与展望。

人工智能在可再生能源材料研发领域的研究进展

摘要:近年来煤炭、石油、天然气等传统能源逐渐枯竭,大量化石能源的使用造成环境污染。为了降低二氧化碳的排放量,国家积极推动风、水电、氢能等可再生能源的发展,而这些能源技术的推广应用的关键是新材料的研发。目前新材料的研发主要依赖于研究者根据材料结构以及其用于某一特定体系的预期催化活性为目标进行实验优化,导致新材料研发过程缓慢。随着计算材料学的进一步发展,研究人员整合了大量关于材料结构及性能表征的材料数据库,通过比较逐步优化筛选新材料。综述了当前材料开发的设计思路以及合成方法,以人工智能(AI)为着眼点阐述了近年来基于AI方法设计、制备可再生能源材料过程中的模型与算法,并总结了AI用于材料设计方面的研究意义和发展过程,最后对AI方法用以可再生能源材料设计、制备的发展进行了展望,介绍了本课题组提出的材料优化模型,并且列举了该模型成功应用于电解水析氢以及硼氢化钠制氢的材料优化的案例。未来,AI技术在新材料的理论计算、合成设计、性能预测、材料微观结构表征分析等方面具有非常广阔应用前景。

Pd基二元合金膜应用研究进展

摘要:Pd基合金膜对氢气具有唯一渗透性和高渗透率,在氢气生产、应用、回收、探测等领域有着广阔的应用前景。PdAg,PdCu,PdAu,PdPt,PdRu为近年来Pd基二元合金膜的研究热点,对它们的研究重心也逐渐由提高合金膜的氢渗透性能,转向了对循环稳定性、高温稳定性、抗毒化性能及膜反应转化率等综合性能的优化。其中PdAg与PdCu合金膜的技术成熟度高,已在具有商业价值的重整制氢反应器及氢气净化器中投入使用。PdAu,PdPt,PdRu合金膜在实验研究中的优异表现,也展示了其在商业应用中的巨大潜能。介绍了上述几种Pd合金膜在重整制氢、脱氢加氢反应器及氢纯化器中的最新研究进展,讨论了其在实际应用中面临的问题与挑战, 提出了不同Pd合金膜可适应的服役条件及可行的优化方案。最后对Pd合金膜开发与应用的发展趋势作了展望,指出了Pd合金膜抗毒化性能的提升仍然是未来研究的重点。