“双碳”背景下新能源固态电池材料理论设计与电池技术开发进展

摘要:由于可充电锂金属电池(LMBs)具有较高理论能量密度,在便携式电子设备、电动汽车和智能电网等方面有重要应用。以固态电解质和锂金属负极组装的固态电池(ASSBs)具有高安全性,被认为是可提高电池能量密度和有效解决安全问题的一种有前景的电池技术。然而,LMBs在实际实施过程中仍面临许多挑战,如库仑效率低、循环性能差和界面反应复杂等。深入分析ASSBs 的物理基础和化学科学问题对电池开发具有重要意义。为了证实和补充实验研究机理,理论计算为探索电池材料及其界面的热力学和动力学行为提供了一种强有力的支撑,为设计综合性能更好的电池奠定了理论基础。本工作论述了理论计算方法在电池关键材料计算中的应用和研究意义;综述了硫化物固态电解质中Li10GeP2S12 (LGPS)及银硫锗矿体系的理论和结构设计思路,包括锂离子的输运机理和扩散路径。分析了新型反钙钛矿Li3OCl 和双反钙钛矿Li6OSI2电解质体系的理论设计思路。综述了氧化物固态电解质体系在缺陷调控下锂离子的输运机理。此外,本工作针对新型卤化物电解质体系的理论设计也进行了介绍。介绍了计算材料学在电池材料性能研究中的作用:借助理论手段分析离子传输机制、相稳定性、电压平台、化学和电化学稳定性、界面缓冲层和电极/电解质界面等关键问题;理解原子尺度下的充放电机制,并为电极材料和电解质提供合理的设计策略。总结了固态电解质和ASSBs电极与电解质间界面的理论计算的最新进展。最后,对ASSBs理论计算的不足、挑战和机遇进行了展望。要点:(1) 论述了固态电池材料的理论设计方法,包括电池的容量、离子电导率、相稳定性及电压平台。(2) 综述了几种常用的硫化物固态电解质体系的理论设计方法。(3) 利用理论计算构建界面模型,详细分析了电解质与电极间的界面工程问题。(4) 介绍了目前先进的组装固态电池技术以及制备薄膜电池的工艺流程。

钠离子电池层状氧化物正极材料改性研究进展

摘要:由于储量丰富、价格低廉及安全环保等突出优点,钠离子电池(SIBs)被认为是大规模储能应用的主要候选技术之一,而正极材料的开发也决定了钠离子电池的商业化进程和最终性能。钠离子电池层状氧化物正极材料,具有比容量高、构造简单、稳定性好等优势,是最富有前景的钠电正极材料之一。但此类材料目前仍面临电化学过程的不可逆变化、空气中储存不稳定和界面稳定性较差等问题,严重制约着钠离子电池商品化进程的发展。为了解决材料所存在的这些问题,研究人员对其进行改性优化。据此,本工作综述了钠电正极材料层状氧化物离子掺杂、表面包覆、纳米结构设计、P/O 混合相等改性措施所取得的成效,为钠电正极材料层状氧化物改性研究提供了基础,并对层状氧化物的后续发展趋势进行了展望。要点:(1) 层状氧化物型正极材料具有理论容量高、解吸附钠能力优且易于大规模合成等特点,成为商用化钠离子电池极富吸引力的候选主材之一。(2) 针对当前层状氧化物型正极材料突出的多级相变及界面稳定性问题,从多角度综述了当前的改善优化进展。(3) 对未来层状氧化物型正极材料的持续优化方向进行了展望,并提出多种策略协同优化的发展前景。

面向“双碳”目标流程的离子膜电渗析:机遇与挑战

摘要:逐渐加剧的温室效应以及高盐废水的大量排放给环境带来了很大的负担,碳达峰和碳中和政策要求形成绿色生产生活方式以及加强对资源综合利用,这对实现碳减排具有积极指导作用。而选择对高盐废水进行资源化回收的方式以及开发高效的碳捕捉技术有利于增强碳减排过程。离子膜电渗析因其独特的分离特性可实现对高盐废水的浓缩淡化、分离回用。为了降低温室效应,可采用淡化回收高盐废水和高效捕捉CO2相结合的方式降低CO2浓度,实现碳达峰和碳中和的目标以及对废水的零排放。本工作综述了以离子膜电渗析为基础的传统电渗析、双极膜电渗析、反向电渗析、置换电渗析、选择性电渗析和冲击电渗析等六种电渗析技术的工作原理,以及他们在碳捕捉转化和废水资源化方面的应用进展。展望了新型离子膜电渗析在处理高盐废水的应用前景,同时指出新型离子膜电渗析技术在降低碳排放方面的限制与挑战,最后为新型电渗析技术实现低碳排放提供新思路。要点:(1) 提出具有独特分离特性的离子膜技术有助于响应“双碳”政策。(2) 主要介绍以离子膜为基础的六种电渗析技术的工作原理和应用进展。(3) 展望新型电渗析技术处理高盐废水和实现碳减排的应用前景。(4) 指出新型电渗析技术在实现碳排放方面的限制和挑战

CO2管道输送技术进展与未来发展浅析

摘要:二氧化碳管道运输技术是二氧化碳捕集技术和利用技术的纽带,连接着起源地和储存地,可以持续不间断地输送二氧化碳,经济效益高、性价比高,符合可持续发展的准则,其中超临界输送是未来二氧化碳管道输送的主要方式。从管道输送的原理、国内外CO2管道输送技术现状、国内外CO2管道安全输送控制技术研究以及典型CO2管道输送示范工程四个方面入手,系统、具体地介绍了CO2管道运输的发展,同时展望了未来发展的趋势。

镁基固态储氢材料研究进展

摘要:镁基储氢材料具有储氢量高、镁资源丰富以及成本低廉等优点,被认为是极具应用前景的一类固态储氢材料。利用镁基储氢材料供氢主要有热分解放氢和水解产氢2种途径。MgH2的热分解放氢焓值高(75 kJ/mol H2),造成其放氢温度较高、动力学差;MgH2的水解过程中,由于常温水解产物Mg(OH)2逐渐包裹在MgH2表面,阻隔了MgH2与水的接触,从而导致水解产氢效率较低。近年来,大量研究工作聚焦于改善MgH2的热解/水解供氢性能及实际应用,已经取得了大量成果。针对目前国内外镁基固态储氢材料的研发,总结了材料/结构改性、反应条件对镁基储氢材料的热解/水解性能的影响,重点阐述了固态镁基储氢材料组成成分-微观结构-储放氢性能之间的关系,并对镁基储氢系统及实际应用场景进行了归纳。未来通过镁基固态储运氢技术的发展,将实现氢气的高安全、高效及大规模储运,助力中国氢能产业的发展。

复合型能源电池研究进展

摘要:与摩擦纳米发电机(TENG)单纯收集环境机械振动能量相比,与TENG相结合的新型复合能源电池能够收集多种形式的能量,具有更宽的工作频率范围和更好的输出性能。近年来,复合型能源电池逐渐向小型化、便携化、智能化发展。分别从TENG与太阳能电池、电磁发电机、压电纳米发电机、多种类型发电机以及其他能源电池相结合等几个类别,综述了复合型能源电池在工作模式、结构、能量输出、应用等方面的研究进展,讨论了复合型能源电池面临的挑战。对其发展前景进行了展望,认为复合型能源电池需要进一步在集成化、大功率、长寿命等方面深入开展研究。

固体氧化物燃料电池在移动交通领域的应用及研究进展

摘要: 固体氧化物燃料电池(solid oxide fuel cell, SOFC)是一种可以将化学能直接转化为电能的能量转换技术,具有效率高、燃料选择灵活、杂质耐受能力强等特点。近年来,人们越来越重视SOFC在移动交通领域的应用。从SOFC的工作原理出发,重点分析SOFC在移动交通领域的应用优势,并介绍SOFC在移动交通中的应用形式,包括作为辅助电力单元和动力系统,并计算出其作为动力系统的油井-车轮(well to wheel, WTW)效率为34%»39%,远高于内燃机(14%»17%) 和电池(27%),展现了SOFC作为动力系统的巨大潜力。接着,重点讨论SOFC发电系统的研究进展,包括原理性验证、能效提高和作为动力系统的性能研究等。最后, 总结了目前SOFC在移动交通领域的应用现状,并对其应用前景进行展望。 SOFC在移动交通领域有巨大的应用潜力,将为交通领域脱碳开辟新的路径。

电聚合薄膜在钙钛矿电池中的应用

摘要:目前,钙钛矿太阳能电池(perovskite solar cell, PSC)的效率(25.8%) 已经可以与硅基太阳能电池相媲美,但是长期稳定性不高是其开展商业化应用亟需解决的问题之一。电化学聚合作为一种制备电活性导电聚合物薄膜的方法,可以有效降低材料和器件制备的成本;同时,化学交联的电聚合薄膜具有较好的稳定性,能有效提高器件的稳定性。总结了将交联的电聚合薄膜作为空穴传输层(hole transporting layer, HTL)或电子传输层(electrontransporting layer, ETL)来开发稳定和高效的钙钛矿太阳能电池,并论述了电聚合薄膜在钙钛矿太阳能电池未来的研究重点。

氢能与燃料电池关键科学技术:挑战与前景

摘要: 氢能是可持续的二次清洁能源,产业链主要包括氢气的制取、储存、运输和应用等环节. 燃料电池是氢能利用的主要方式, 处于产业链的核心地位。以氢能产业链为主线,围绕氢能燃料电池产业化进展,对制氢、储氢、加氢站、氢能燃料电池电堆及关键材料, 以及车用燃料电池系统关键部件的技术特征、产业化进展、发展现状及存在的挑战进行了概述,尤其对中国燃料电池产业链的发展现状进行了重点介绍。为了加速氢能与燃料电池真正意义上的产业化, 还提出了几点需要克服挑战的研发方向。

储能钠电池技术发展的挑战与思考

摘要:储能安全是国家能源安全的重要方面,是国民经济发展的重要支撑,对国家安全、可持续发展以及社会稳定具有重要的影响。钠电池技术兼具高功率密度、高能量密度、低成本以及高安全性等优势,成为一类重要的大规模储能技术。本文重点介绍了包括钠硫电池和钠-金属氯化物电池等在内的典型钠电池体系的技术优势和应用场景,并通过分析钠电池技术在国内外的发展与应用现状提出了我国钠电池技术可能的发展方向并给出了相应的建议,包括支持储能钠电池相关材料科学的研究和工程化技术攻关、推动储能钠电池相关上下游产业的聚集发展、建立健全储能钠电池的相关标准和性能评价平台等措施,以提升我国储能钠电池技术的研发水平和技术成熟度,为我国的能源安全建设带来新的可靠选择。