磷酸铁锂电池循环利用:从基础研究到产业化

摘要:磷酸铁锂(LiFePO4)电池因其良好的循环性、高安全性、低成本在电动汽车和储能领域得到广泛应用,市场保有量的持续增加引发了对废旧LiFePO4电池循环利用的更多重视;然而LiFePO4自身的价值属性不突出、综合回收技术壁垒偏高,导致废旧LiFePO4电池的高值回收仍是LiFePO4电池循环利用的关键问题。本文总结了LiFePO4电池的退役路径和再生利用路径,从预处理、资源再生两方面梳理了LiFePO4正极废料再生利用的研究进展,得出了直接再生更具应用潜能但仍处于技术初步研究阶段、间接再生适合原料复杂性较高或需要高价值资源储备情况的基本判断。着眼LiFePO4正极废料再生利用产业化发展,识别出发展前提、发展关键、发展保障3个方面的产业化重要因素,展示了LiFePO4全组分短程再生利用技术及其万吨级生产线应用案例。进一步阐述了退役电池残能检测、智能化拆解预处理、正极废料直接再生等LiFePO4电池循环利用技术的发展趋势,原料来源及使用状况复杂、多种金属杂质精深脱除、正极材料更新换代等LiFePO4电池循环利用技术的应用挑战,提出了规范管理并顺畅回收渠道、加快关键技术攻关与应用转化、加强宣传和推广力度以提高市场接受度等发展建议,以畅通LiFePO4电池从基础研究到产业化的创新路径,促进LiFePO4电池循环利用及关联产业绿色发展。

用于锂电池的离子型聚合物合成及其性能

摘要: 离子型聚合物因其高分子链上的共价连接离子基团理化性质独特而具有重要的科研价值和应用前景,且在锂电池等新能源领域得到了应用。离子型单体聚合与聚合物后修饰是合成离子型聚合物的两种主要途径。本文概述了通过两类方法制备的阳离子型、阴离子型和两性离子型聚合物,及其在锂电池电解质、电极保护涂层、电极黏结剂方面的研究进展。鉴于重复结构单元、离子基团种类等因素对材料电导率、迁移数、电化学稳定性、力学强度等性能的显著影响,推动设计合成新结构离子型聚合物,深入展开结构与性能关系研究,有助于进一步研发能够满足特定应用需求的高性能材料,推动发展新一代安全高效且性能稳定的储能设备。

锂离子电池负极材料的研究进展

摘要:锂离子电池因其较高的能量密度、良好的安全性能和优异的循环性能而受到广泛关注。目前,为了满足不断增长的储能应用需求,人们在开发具有更高电化学性能的锂离子电池负极材料方面做了大量的研究工作。根据锂离子电池负极材料在充放电过程中发生的电化学反应机制不同,分别详细介绍了嵌入型负极材料(石墨、TiO2、钛酸锂等)、转化型负极材料(Fe2O3、NiO等)和合金化负极材料(Si、Ge、P等)的电化学反应机制及其优缺点,重点阐述了不同负极材料的提高电化学性能方法和策略。可为锂离子电池负极材料的构建和性能优化提供重要的参考价值。

电容式钛酸锂电池的设计及制备方法

摘要:为解决现有钛酸锂电池在低温下电池容量衰减和充放电过程中的电池胀气问题,从电池内外部结构和制备工艺流程两方面提出新型钛酸锂电池结构设计.在电池内部模仿电容式结构,融合电容器的物理储能方式和蓄能电池的化学储能方式,提升电池在低温环境下的充放电性能.在制备工艺上采取柱形锂离子电池含浸新技术,提高含浸效率,减少电池内部水分,部分解决电池胀气问题,并进行相关性能测试.结果表明,新型钛酸锂电池容量保持率可在9548次充放电循环下达到92.5%,低温环境下电池容量保持率大于75%,该方法有效提升了钛酸锂电池性能.

钙基电池:下一代低成本、高能量密度储能技术

摘要:全球能源需求不断增长,钙基电池因其资源丰富(钙在地壳中的储量约为锂的2500 倍)、电化学性能优异(体积比容量高达2073 mA·h·cm−3)以及环境友好等优势,被视为下一代高性能储能技术的有力竞争者。然而,钙基电池的发展仍面临多重挑战,包括金属钙难以实现高效可逆的沉积/剥离、电解液体系电化学稳定窗口有限,以及高性能正极材料匮乏等关键问题。系统梳理了近年来钙基电池领域的研究进展,重点围绕钙负极优化、电解液优化、正极反应体系设计以及新型电池结构构建等方面展开综述。针对当前技术瓶颈,归纳了代表性研究中提出的机制理解与技术策略,探讨了钙基电池在储能场景中的潜在应用前景,提出未来可以优化钙离子的溶剂化结构和界面动力学、扩大离子扩散通道并缓解体积膨胀、提升电极材料的氧化还原电位和容量、开发高性能柔性钙基电池等方面作为发展方向,旨在为推动钙基电池技术突破提供全面的理论依据与技术参考,推动钙基电池走向实际应用,并最终实现其在储能领域的全部潜力。

纳米线储能材料与器件新进展

摘要:纳米线电极材料在电化学储能领域备受关注, 是纳米与新能源技术的交叉和前沿. 纳米线拥有大的长径比、较高的比表面积、轴向连续电子传输特性与径向电子限域效应. 纳米线用作电极材料时, 由于与电解液的接触面积比较大以及反应离子的脱嵌距离短, 能大幅提升电极材料的电化学活性, 故被广泛应用于功能化储能器件. 本文介绍了纳米线原位表征技术以及纳米线在储能电极材料中的应用(离子电池、高能电池、超级电容器和微纳与柔性储能器件). 对纳米线储能材料与器件的研究与进展进行了概述, 并讨论了在电化学储能材料研究中所存在的挑战. 最后, 对纳米线储能材料与器件的发展趋势进行了展望.

纤维电池: 现状、机遇与挑战

摘要:可穿戴电子器件的快速发展使得对柔性供能器件的需求日益增长. 纤维形态有望赋予电池卓越的柔韧性、小体积和高延展性, 因此纤维电池被视为下一代可穿戴电子器件的理想能量来源之一. 然而, 纤维的高长径比特性对纤维电池的电化学性能和力学稳定性提出了严峻挑战. 以往的研究侧重于纤维电池的制备与设计, 未从纤维结构本身特性出发进行分析. 本文旨在填补这一空白, 从纤维的本征特性出发, 分析纤维结构为电池带来的机遇与挑战, 由此阐述纤维电池的优缺点及其独特价值, 为设计下一代纤维电池提供思路. 本文首先回顾纤维电池的发展历程, 介绍其基本构造, 阐述其在可穿戴和植入式电子器件中的重要地位; 随后, 探讨纤维形态如何影响纤维电池的电化学性能, 分析可能存在的性能瓶颈和优化策略; 接着, 在力学性能方面, 阐述纤维电池复杂的应用场景对其静态柔性和动态稳定性的要求以及面临的挑战; 最后, 分析和讨论纤维电池在应用场景中的独特优势, 并展望未来研究方向和发展趋势.

纳米纤维素在相变储能领域的应用研究进展

摘要:纳米纤维素作为一种新型生物基功能材料,因优异的力学性能、纳米特性和绿色环保特性,在解决相变储能材料液相泄漏问题上展现出巨大潜力。本文首先系统地梳理了相变储能材料的基本原理和多样化的分类体系,综述了纳米纤维素的制备方法以及在相变储能材料中的研究进展,主要包括纳米纤维素微胶囊基相变储能材料和纳米纤维素气凝胶基相变储能材料及其导热增强机制,最后总结了纳米纤维素在相变储能领域的研究重点并展望了未来的发展方向。

核电站堆内构件用奥氏体不锈钢冷拉棒材的研制

摘要:核电站堆内构件用奥氏体不锈钢对材料的纯净度、晶粒度、耐腐蚀性及力学性能要求极其严格,质量稳定的材料对核电站的安全运行至关重要。通过对316不锈钢设计合理的化学成分(质量分数/%:0.045C、0.06N、17.00Cr、2.50Mo、12.50Ni、1.80Mn);采用三元预熔渣重熔冶炼提升钢液纯净度,低熔速减少冶炼偏析;锻造+轧制联合开坯;依据材料规格控制固溶保温时间;精确控制冷拉变形量2 mm。成功研制出堆内构件用奥氏体不锈钢SA-479 316(N-60-6)冷拉棒材。其非金属夹杂物A、B、C、D类粗系、细系单项均≤1.0级,晶粒度达到5级,晶间腐蚀合格,室温拉伸屈服强度479~545 MPa,350℃高温拉伸强度515~575 MPa,满足堆内构件用冷拉棒材使用要求。

石墨烯纳米筛: 基础和应用研究

摘要:石墨烯纳米筛材料是当前科技前沿中一种新型二维多孔材料,其平面多孔结构有利于电解质离子的纵向传输,缩短了离子传输路径, 有效避免了传统石墨烯材料普遍存在的问题,如π-π堆叠造成活性面积低、纵向传输性能差、离子传输路径长和电解液不易浸润等,在能量存储与转换领域中表现出比传统石墨烯基材料更为优异的性能。本文综述了近几年来各种结构可定制、结构/组分复杂性高、形态可控制、电化学性能增强的石墨烯纳米筛材料的合理设计和合成的研究进展,着重讨论了石墨烯纳米筛的结构设计对能源存储与转换方面的性能影响,期望为高性能能源存储与转换方面进一步的创新工作提供参考。