钛基材料用于锂硫电池正极改性研究进展

摘要:锂硫电池因其高比容量、高能量密度和低成本等特点已被视为超越锂离子电池的下一代可充电电池。由于反应产物可溶性多硫化物的穿梭效应和循环中硫电极的体积膨胀导致电池的循环寿命较差。为了解决锂硫电池中存在的问题,研究人员开发了多种纳米结构的金属材料。总结了利用钛元素和钛基化合物(包括钛基氧化物、钛基硫化物和钛基氮化物)与硫的反应形成牢固化学键,通过金属基复合材料的结构设计来提升锂硫电池的综合性能。

双极膜研究进展及氢能方向应用展望 

摘要:燃料电池、电解水制氢等利用氢能的可再生能源转换技术在“双碳”目标进程中扮演着关键角色,双极膜燃料电池和双极膜电解水制氢是近十几年才提出的、以双极膜为电解质的新型电化学能源转换装置。从双极膜水解离机理出发,详细介绍双极膜的组成、界面层结构及制备工艺,并对双极膜在不同领域的应用进行了梳理和展望,其中主要着眼于双极膜在燃料电池和电解水制氢2大氢能领域的国内外研究进展,探索由双极膜结构带来的独特应用优势,提出关键问题和发展方向,总结绿色制氢发展的机遇和挑战。

共价有机框架材料在钠金属电池负极保护中的进展

摘要: 钠金属电池是一种利用钠金属作为负极的二次电池,具有钠资源丰富、能量密度高和安全性高等优势,成为一种新型电池技术正在飞速发展。然而,钠金属电池负极也面临着不可控的钠枝晶生长、“死钠”的产生、电解液-电极中间相不稳定等挑战,制约了钠金属电池性能的发挥。为了解决这些问题,开发稳定钠金属沉积/剥离界面层引起了研究者的关注。其中,共价有机框架(COFs) 材料作为一类由共价键连接的晶态多孔材料,因其可调的孔道结构、高比表面积和可修饰的骨架,在隔膜修饰、准固态电解质构筑以及钠负极界面层设计等钠金属负极保护方面已初步显示出巨大潜能。本文综述了近年来COFs 在钠金属电池负极保护中的研究进展,展望了未来存在的挑战与应用前景,为新型COFs 材料的设计、功能开发以及器件制备提供了新思路。

飞轮储能用磁轴承综述

摘要:磁轴承是利用磁场力将转子悬浮于空间,实现定子与转子之间无机械接触的一种新型支承轴承,在飞轮储能领域具有非常广阔的应用前景。阐述了飞轮储能工作原理以及常见的4种磁轴承支承方式,根据偏置磁通产生方式、受控自由度数量、磁极数量对磁轴承结构进行分类介绍,并对磁轴承关键技术参数优化、无传感控制技术以及解耦控制技术进行综述,指出磁轴承关键技术的未来发展趋势是使用智能算法建立模型求最优解。

纳米压印技术在太阳能电池中应用的研究进展

摘要:对纳米压印技术原理、分类和不同领域的应用进行了简单阐述。总结了纳米压印技术在不同类型的太阳能电池,如晶硅太阳能电池、薄膜太阳能电池、聚合物太阳能电池及其他新型太阳能电池中的应用,并重点阐述了纳米压印技术在制备太阳能电池减反膜、图案化衬底、图案化活性层和图案化电极等有效减少太阳能电池表面太阳光反射和大大提高太阳能电池光电转换效率方面的研究进展。最后,针对纳米压印技术在产业化中所面临的困难进行了分析和总结,并提出了纳米压印技术在太阳能电池领域未来的研究重点和发展方向。

分子掺杂半透明有机太阳能电池研究进展

摘要:发展半透明太阳能电池技术,是实现城市清洁、规模用电的重要策略. 有机太阳能电池的活性层由吸收光谱互补的给、受体材料组成,降低给体材料含量即可增加活性层的可见光透过率;然而,给体含量减少会阻碍光生电荷的产生与收集,引起活性层高透光率与高转换效率之间的矛盾. 本综述从这一难点出发,综述了近年来以分子掺杂为破解方法的半透明有机太阳能电池研究进展,围绕如何实现有机太阳能电池的活性层分子掺杂及分子掺杂如何优化非理想形貌下的光伏过程,依次介绍分子掺杂机理、掺杂剂分布调控、掺杂改善电荷收集和掺杂促进激子解离四方面的研究进展. 最后,概述活性层掺杂有机太阳能电池未来发展所面临的三大挑战.

海上风塔用钢国内外研究现状及发展趋势

摘要:我国海岸线长达18万km,海上风能资源技术开发潜力巨大。近年来,在“双碳”的大背景下,我国风电行业政策利好不断,海上风电装机容量在电网中所占的比重快速上升,海上风塔用钢需求增长态势明显。随着海上风电进一步向集群化、大型化和深海化发展,如何开发出与之适配的低成本、综合性能优良的海上风塔用钢已成领域内亟待解决的关键性问题。介绍了国内外海上风塔用钢的标准、分类及性能要求,并对其化学成分设计和生产工艺方面的研究现状及发展趋势进行了综述。

低温锂离子电容器研究进展

摘要:锂离子电容器(LIC)采用了双电层电容器(EDLC)正极和锂离子电池(LIB) 负极,因而兼具高能量密度、高功率密度和长循环寿命的优势. LIC在储能过程中正极表面发生电荷的可逆吸脱附,负极体相中存在Li+的反复嵌入/脱嵌,在低温环境下由于电解液的黏度、电导率等物化性质发生很大改变,严重影响了LIC中离子的正常运输和电荷转移,导致无法在低温工况下正常运转,限制了其全天候、宽温域的应用.因此改善LIC的低温性能成为现阶段亟待解决的问题,受到了业界的广泛关注.众多研究表明电极材料和电解液之间的相互作用直接决定LIC低温电荷存储的过程,是解决低温环境下LIC 能量密度和功率密度低的关键环节.本文从电极材料和电解液两个方面综述了国内外LIC低温性能的研究进展,概述了现阶段低温碳基材料的化学改性、表面修饰、离子嵌入以及新型电极材料的研发,并从电解液的锂盐、溶剂、添加剂三部分出发,介绍了低温工况下电解液各组成部分对LIC性能的影响,对不同改进工艺进行了分类与总结,重点讨论了新型低温添加剂在LIC中的应用,最后总结了新一代低温电解液的研究进展并对具有宽温度工况的下一代LIC提供了初步展望.

新型氢储运技术发展及应用现状

摘要:重点分析了固态储氢、有机液态储氢、甲醇储氢和氨储氢等多种新型储运氢技术特点、发展现状、经济成本及关键技术瓶颈,探讨了其未来发展方向,并横向对比了不同氢储运技术的经济性水平与应用前景。当前,固态储氢技术已在部分领域实现示范应用,但其大规模产业化仍面临高成本和高能耗等挑战。有机液态储氢技术虽然操作便捷,但受限于脱氢温度高、释氢速率低及对贵金属催化剂的依赖。绿色甲醇和绿氨储氢技术在能耗、安全性和经济性方面仍存在一定制约。不同储运技术各具优势与局限,需要综合考虑氢储运量、运输距离、安全性、碳排放及具体应用场景,以确定最优的技术路径和应用方案。

基于可逆热致变色的动态体吸收太阳能光热存储相变材料

摘要:相变材料(phase change material, PCM)有望解决热能储存和热管理等方面的问题. 然而, 随着瞬态熔体前沿远离热源, 其能量密度和功率密度逐渐降低. 在太阳能直接热利用过程中, 传统充热的完成完全依赖于PCM本身的热扩散过程, 低热导限制了PCM的充热速率. 本文提出了基于可逆热致变色特性的动态相变材料(dynamicphase change material, Dyn PCM), 可以自动控制光热界面位移紧跟熔体前沿, 使相变材料在光热转换中的充热速率不受材料自身热导率限制. Dyn PCM由热致变色剂和主体PCM两部分组成, 热致变色剂以2-苯氨基-3-甲基-6-二丁氨基荧烷作为供电子体, 2,2-双(4-羟苯基)丙烷作为受电子体及4-苄氧基苯基乙基葵酸酯作为溶剂成功实现无色-黑色的变换. 主体PCM以石蜡为例, 其中含83.3 wt.%石蜡含量的Dyn PCM5潜热为154.38 kJ/kg, 仅比石蜡降低6.6%, 其透明态表现出与石蜡接近的透射率为91.2%. 对比表明, Dyn PCM5的充热速率比石蜡提升了260%.经80次循环后, Dyn PCM的基团未发生改变, 充放热性能及透射率稳定性优异, 仍具有良好的可逆的变色及充热能力. 因此, 本研究提出的热致变色复合Dyn PCM5是一种有前景的太阳能储热材料, 可进一步运用在太阳能直接吸热过程中.