风电轴承钢球冷镦的可行性分析

摘要:针对原风电轴承大尺寸钢球热镦成形工艺耗时长,效率低,耗能大,且钢球组织不致密的问题,提出一种风电轴承钢球冷镦成形工艺。以直径50,65mm的钢球为例,建立了钢球棒料尺寸理论计算模型,对钢球冷镦成形过程进行仿真模拟并计算理论压碎载荷,冷镦后的球坯有明显的两极和环带,且等效应力分布均匀,直径50mm钢球的理论压碎载荷满足要求。实际加工验证的结果表明直径50mm钢球的压碎载荷满足要求,直径65mm钢球的内部组织致密,强度高。理论和试验均证明风电轴承钢球可采用冷镦成形工艺。

锂离子电池长寿命石墨电极研究现状与展望

摘要:商业化锂离子电池使用的负极材料主要是石墨,在未来的一段时间内石墨仍是主要的负极材料。锂离子电池石墨电极在使用或运输过程中常会出现某些失效,这些失效将影响锂离子电池的使用寿命,因此如何延长锂离子电池石墨电极的使用寿命成为重中之重。通过对近期相关文献的探讨,综述了锂离子电池石墨电极主要的失效机理,然后根据石墨电极的失效机理从材料设计与电极设计两个方面来延长石墨电极的使用寿命,最后指出未来长寿命石墨电极的未来发展趋势。

磷酸铁锂电池循环利用:从基础研究到产业化

摘要:磷酸铁锂(LiFePO4)电池因其良好的循环性、高安全性、低成本在电动汽车和储能领域得到广泛应用,市场保有量的持续增加引发了对废旧LiFePO4电池循环利用的更多重视;然而LiFePO4自身的价值属性不突出、综合回收技术壁垒偏高,导致废旧LiFePO4电池的高值回收仍是LiFePO4电池循环利用的关键问题。本文总结了LiFePO4电池的退役路径和再生利用路径,从预处理、资源再生两方面梳理了LiFePO4正极废料再生利用的研究进展,得出了直接再生更具应用潜能但仍处于技术初步研究阶段、间接再生适合原料复杂性较高或需要高价值资源储备情况的基本判断。着眼LiFePO4正极废料再生利用产业化发展,识别出发展前提、发展关键、发展保障3个方面的产业化重要因素,展示了LiFePO4全组分短程再生利用技术及其万吨级生产线应用案例。进一步阐述了退役电池残能检测、智能化拆解预处理、正极废料直接再生等LiFePO4电池循环利用技术的发展趋势,原料来源及使用状况复杂、多种金属杂质精深脱除、正极材料更新换代等LiFePO4电池循环利用技术的应用挑战,提出了规范管理并顺畅回收渠道、加快关键技术攻关与应用转化、加强宣传和推广力度以提高市场接受度等发展建议,以畅通LiFePO4电池从基础研究到产业化的创新路径,促进LiFePO4电池循环利用及关联产业绿色发展。

相变储能材料及其应用研究进展

摘要:人类在面临化石能源枯竭的同时,对能量的利用率依然还停留在较低的水平。因此,在大力发展新能源的同时,着力研发节能环保新材料新技术具有十分重要的意义。相变材料(phase-change materials,PCM)是一种节能环保的储能材料,它在蓄热与温控等领域具有大规模商业应用的潜力。本文首先对相变储能材料的基本特征、工作原理以及分类等方面作了简要的介绍;并就相变储能材料在温控与蓄热等领域的应用与发展情况进行了具体的分析,指出了PCM的性能是制约其深入广泛应用的主要技术障碍。在此基础上,详细评述了PCM存在的主要问题以及针对这些问题开展的相关研究工作和最新发展动态,指出通过功能复合等新技术优化材料性能、设计新材料体系、拓展新的应用领域将是相变储能材料未来的主要发展方向。

用于锂电池的离子型聚合物合成及其性能

摘要: 离子型聚合物因其高分子链上的共价连接离子基团理化性质独特而具有重要的科研价值和应用前景,且在锂电池等新能源领域得到了应用。离子型单体聚合与聚合物后修饰是合成离子型聚合物的两种主要途径。本文概述了通过两类方法制备的阳离子型、阴离子型和两性离子型聚合物,及其在锂电池电解质、电极保护涂层、电极黏结剂方面的研究进展。鉴于重复结构单元、离子基团种类等因素对材料电导率、迁移数、电化学稳定性、力学强度等性能的显著影响,推动设计合成新结构离子型聚合物,深入展开结构与性能关系研究,有助于进一步研发能够满足特定应用需求的高性能材料,推动发展新一代安全高效且性能稳定的储能设备。

锂离子电池负极材料的研究进展

摘要:锂离子电池因其较高的能量密度、良好的安全性能和优异的循环性能而受到广泛关注。目前,为了满足不断增长的储能应用需求,人们在开发具有更高电化学性能的锂离子电池负极材料方面做了大量的研究工作。根据锂离子电池负极材料在充放电过程中发生的电化学反应机制不同,分别详细介绍了嵌入型负极材料(石墨、TiO2、钛酸锂等)、转化型负极材料(Fe2O3、NiO等)和合金化负极材料(Si、Ge、P等)的电化学反应机制及其优缺点,重点阐述了不同负极材料的提高电化学性能方法和策略。可为锂离子电池负极材料的构建和性能优化提供重要的参考价值。

钠离子电池储能技术及经济性分析

摘要:储能技术是构建能源互联网的关键支撑技术,是保障电网稳定运行、优化能量传输、消纳清洁能源、改善电能质量等的重要手段。电化学储能具备地理位置限制小、建设周期短等优势,是主流储能方式之一。目前,在电化学储能中发展最为成熟的是锂离子电池技术,但随着电动汽车普及和大规模储能应用,锂离子电池或将面临锂资源紧缺的问题。钠离子电池由于资源丰富、成本低廉、能量转换效率高、循环寿命长、维护费用低等优势,已成为目前储能技术的研究热点。本文对钠离子电池储能技术的可行性和经济性进行了分析,与当前主流储能技术进行了对比,从度电成本这一经济性角度分析了钠离子电池在大规模储能领域的优势,简要介绍了钠离子电池的应用场景及1 MW·h钠离子电池储能示范案例,并在此基础上给出了钠离子电池应用于储能电站的一些思考和建议。

电容式钛酸锂电池的设计及制备方法

摘要:为解决现有钛酸锂电池在低温下电池容量衰减和充放电过程中的电池胀气问题,从电池内外部结构和制备工艺流程两方面提出新型钛酸锂电池结构设计.在电池内部模仿电容式结构,融合电容器的物理储能方式和蓄能电池的化学储能方式,提升电池在低温环境下的充放电性能.在制备工艺上采取柱形锂离子电池含浸新技术,提高含浸效率,减少电池内部水分,部分解决电池胀气问题,并进行相关性能测试.结果表明,新型钛酸锂电池容量保持率可在9548次充放电循环下达到92.5%,低温环境下电池容量保持率大于75%,该方法有效提升了钛酸锂电池性能.

钠离子电池低温电解质的研究进展与挑战

摘要:钠离子电池因资源丰富、成本低廉、安全性高及环境友好等优势,在低速电动汽车、大型储能系统等领域备受关注。电解质作为电池的重要组成部分之一,承担着在正负极间传输离子的作用,对电池的循环寿命、倍率、安全性及自放电等性能具有重要影响。然而,在低温环境下,由于离子电导率下降、电解质与正负极兼容性变差、去溶剂化能升高、电极/电解质界面性质变差等问题,使得钠离子电池难以发挥理想的性能。本文总结了近年来对低温电解质的钠离子溶剂化结构及电极/电解质界面的新认识,并对基于氢键网络破坏、弱溶剂化、快速反应动力学及阴离子干预的低温电解质设计策略进行了系统分析。最后,提出深入理解电解质的钠离子溶剂化结构、电极/ 电解质界面性质与电解质低温性能之间的关系是未来从电解质角度提升钠离子电池低温性能的关键。

钙基电池:下一代低成本、高能量密度储能技术

摘要:全球能源需求不断增长,钙基电池因其资源丰富(钙在地壳中的储量约为锂的2500 倍)、电化学性能优异(体积比容量高达2073 mA·h·cm−3)以及环境友好等优势,被视为下一代高性能储能技术的有力竞争者。然而,钙基电池的发展仍面临多重挑战,包括金属钙难以实现高效可逆的沉积/剥离、电解液体系电化学稳定窗口有限,以及高性能正极材料匮乏等关键问题。系统梳理了近年来钙基电池领域的研究进展,重点围绕钙负极优化、电解液优化、正极反应体系设计以及新型电池结构构建等方面展开综述。针对当前技术瓶颈,归纳了代表性研究中提出的机制理解与技术策略,探讨了钙基电池在储能场景中的潜在应用前景,提出未来可以优化钙离子的溶剂化结构和界面动力学、扩大离子扩散通道并缓解体积膨胀、提升电极材料的氧化还原电位和容量、开发高性能柔性钙基电池等方面作为发展方向,旨在为推动钙基电池技术突破提供全面的理论依据与技术参考,推动钙基电池走向实际应用,并最终实现其在储能领域的全部潜力。