固体氧化物燃料电池在移动交通领域的应用及研究进展

摘要: 固体氧化物燃料电池(solid oxide fuel cell, SOFC)是一种可以将化学能直接转化为电能的能量转换技术,具有效率高、燃料选择灵活、杂质耐受能力强等特点。近年来,人们越来越重视SOFC在移动交通领域的应用。从SOFC的工作原理出发,重点分析SOFC在移动交通领域的应用优势,并介绍SOFC在移动交通中的应用形式,包括作为辅助电力单元和动力系统,并计算出其作为动力系统的油井-车轮(well to wheel, WTW)效率为34%»39%,远高于内燃机(14%»17%) 和电池(27%),展现了SOFC作为动力系统的巨大潜力。接着,重点讨论SOFC发电系统的研究进展,包括原理性验证、能效提高和作为动力系统的性能研究等。最后, 总结了目前SOFC在移动交通领域的应用现状,并对其应用前景进行展望。 SOFC在移动交通领域有巨大的应用潜力,将为交通领域脱碳开辟新的路径。

复合型能源电池研究进展

摘要:与摩擦纳米发电机(TENG)单纯收集环境机械振动能量相比,与TENG相结合的新型复合能源电池能够收集多种形式的能量,具有更宽的工作频率范围和更好的输出性能。近年来,复合型能源电池逐渐向小型化、便携化、智能化发展。分别从TENG与太阳能电池、电磁发电机、压电纳米发电机、多种类型发电机以及其他能源电池相结合等几个类别,综述了复合型能源电池在工作模式、结构、能量输出、应用等方面的研究进展,讨论了复合型能源电池面临的挑战。对其发展前景进行了展望,认为复合型能源电池需要进一步在集成化、大功率、长寿命等方面深入开展研究。

镁基固态储氢材料研究进展

摘要:镁基储氢材料具有储氢量高、镁资源丰富以及成本低廉等优点,被认为是极具应用前景的一类固态储氢材料。利用镁基储氢材料供氢主要有热分解放氢和水解产氢2种途径。MgH2的热分解放氢焓值高(75 kJ/mol H2),造成其放氢温度较高、动力学差;MgH2的水解过程中,由于常温水解产物Mg(OH)2逐渐包裹在MgH2表面,阻隔了MgH2与水的接触,从而导致水解产氢效率较低。近年来,大量研究工作聚焦于改善MgH2的热解/水解供氢性能及实际应用,已经取得了大量成果。针对目前国内外镁基固态储氢材料的研发,总结了材料/结构改性、反应条件对镁基储氢材料的热解/水解性能的影响,重点阐述了固态镁基储氢材料组成成分-微观结构-储放氢性能之间的关系,并对镁基储氢系统及实际应用场景进行了归纳。未来通过镁基固态储运氢技术的发展,将实现氢气的高安全、高效及大规模储运,助力中国氢能产业的发展。

CO2管道输送技术进展与未来发展浅析

摘要:二氧化碳管道运输技术是二氧化碳捕集技术和利用技术的纽带,连接着起源地和储存地,可以持续不间断地输送二氧化碳,经济效益高、性价比高,符合可持续发展的准则,其中超临界输送是未来二氧化碳管道输送的主要方式。从管道输送的原理、国内外CO2管道输送技术现状、国内外CO2管道安全输送控制技术研究以及典型CO2管道输送示范工程四个方面入手,系统、具体地介绍了CO2管道运输的发展,同时展望了未来发展的趋势。

石墨烯基二氧化碳还原电催化材料研究进展

摘要:通过电化学方法来减少二氧化碳(CO2),同时生产燃料和高附加值化学品,是一种克服全球变暖问题的有效策略,对于缓解能源和环境的双重压力具有重要的现实意义。由于CO2 稳定的分子结构,设计高选择性、高能效和低成本的电催化剂是关键。石墨烯及其衍生物因其独特且优异的物理、力学和电学性能,相对较低的成本,使其在CO2 电还原方面具有竞争力。此外,石墨烯基材料的表面可以通过使用不同的方法进行改性,包括掺杂、缺陷工程、构建复合结构和包覆形状。首先,本文综述了电化学CO2 还原的基本概念、评价标准,以及催化原理和过程。其次,简要介绍了石墨烯基催化剂的制备方法,并按照催化位点的类别,总结了石墨烯基催化剂近年来的研究进展。最后,对CO2 电还原技术未来发展方向进行了探讨与展望。

可充电锌离子电池共晶电解液的研究进展

摘要: 可充电锌离子电池(RZIBs)因高安全性、低成本以及环境友好等优势广受关注。但传统水系电解液中水的高活性导致锌负极在循环过程中面临着枝晶和副反应问题,限制了RZIBs的发展。共晶电解液通过氢键和配位效应调节Zn2+ 离子溶剂化结构中水分子数量,有效解决了上述问题。此外,其具有合成简单、无腐蚀性和环境友好等优势,在RZIBs领域备受关注。介绍了共晶电解液的基本原理和定义,然后重点阐述了共晶电解液在RZIBs中的应用现状,最后对共晶电解液的发展前景进行了展望,为制备出优异的共晶电解液提供了重要思路。

静电纺丝法制备陶瓷纤维及其光催化性能

摘要:光催化材料可转换太阳能为化学能,实现水体污染物降解、制氢等功能,在清洁能源与环境保护方面具有广阔的应用前景。静电纺丝法制备的陶瓷纤维是备受关注的光催化材料之一。目前,光催化技术的发展主要受限于光响应范围和载流子利用率。优化光催化过程的效率仍然存在许多挑战。本文首先对光催化过程的基本原理和技术瓶颈进行了阐述,并简述了静电纺丝制备陶瓷纤维的原理及方法。系统介绍了在静电纺丝陶瓷纤维中,通过前驱体成分设计、静电纺丝参数控制、热处理工艺调控等工艺设计,利用掺杂、表面等离子共振、上转换发光等策略,拓展可见光吸收范围的方法。同时,阐释了在电纺陶瓷纤维中构筑各类异质结构进而调控载流子迁移路径的方法。最后,本文对静电纺丝法制备的陶瓷纤维在光催化领域的潜在研究方向进行了总结与展望,以期能推动新型陶瓷纤维光催化材料的发展。

钠离子电池层状氧化物正极材料改性研究进展

摘要:由于储量丰富、价格低廉及安全环保等突出优点,钠离子电池(SIBs)被认为是大规模储能应用的主要候选技术之一,而正极材料的开发也决定了钠离子电池的商业化进程和最终性能。钠离子电池层状氧化物正极材料,具有比容量高、构造简单、稳定性好等优势,是最富有前景的钠电正极材料之一。但此类材料目前仍面临电化学过程的不可逆变化、空气中储存不稳定和界面稳定性较差等问题,严重制约着钠离子电池商品化进程的发展。为了解决材料所存在的这些问题,研究人员对其进行改性优化。据此,本工作综述了钠电正极材料层状氧化物离子掺杂、表面包覆、纳米结构设计、P/O 混合相等改性措施所取得的成效,为钠电正极材料层状氧化物改性研究提供了基础,并对层状氧化物的后续发展趋势进行了展望。要点:(1) 层状氧化物型正极材料具有理论容量高、解吸附钠能力优且易于大规模合成等特点,成为商用化钠离子电池极富吸引力的候选主材之一。(2) 针对当前层状氧化物型正极材料突出的多级相变及界面稳定性问题,从多角度综述了当前的改善优化进展。(3) 对未来层状氧化物型正极材料的持续优化方向进行了展望,并提出多种策略协同优化的发展前景。

“双碳”背景下新能源固态电池材料理论设计与电池技术开发进展

摘要:由于可充电锂金属电池(LMBs)具有较高理论能量密度,在便携式电子设备、电动汽车和智能电网等方面有重要应用。以固态电解质和锂金属负极组装的固态电池(ASSBs)具有高安全性,被认为是可提高电池能量密度和有效解决安全问题的一种有前景的电池技术。然而,LMBs在实际实施过程中仍面临许多挑战,如库仑效率低、循环性能差和界面反应复杂等。深入分析ASSBs 的物理基础和化学科学问题对电池开发具有重要意义。为了证实和补充实验研究机理,理论计算为探索电池材料及其界面的热力学和动力学行为提供了一种强有力的支撑,为设计综合性能更好的电池奠定了理论基础。本工作论述了理论计算方法在电池关键材料计算中的应用和研究意义;综述了硫化物固态电解质中Li10GeP2S12 (LGPS)及银硫锗矿体系的理论和结构设计思路,包括锂离子的输运机理和扩散路径。分析了新型反钙钛矿Li3OCl 和双反钙钛矿Li6OSI2电解质体系的理论设计思路。综述了氧化物固态电解质体系在缺陷调控下锂离子的输运机理。此外,本工作针对新型卤化物电解质体系的理论设计也进行了介绍。介绍了计算材料学在电池材料性能研究中的作用:借助理论手段分析离子传输机制、相稳定性、电压平台、化学和电化学稳定性、界面缓冲层和电极/电解质界面等关键问题;理解原子尺度下的充放电机制,并为电极材料和电解质提供合理的设计策略。总结了固态电解质和ASSBs电极与电解质间界面的理论计算的最新进展。最后,对ASSBs理论计算的不足、挑战和机遇进行了展望。要点:(1) 论述了固态电池材料的理论设计方法,包括电池的容量、离子电导率、相稳定性及电压平台。(2) 综述了几种常用的硫化物固态电解质体系的理论设计方法。(3) 利用理论计算构建界面模型,详细分析了电解质与电极间的界面工程问题。(4) 介绍了目前先进的组装固态电池技术以及制备薄膜电池的工艺流程。

铜单原子催化剂的制备及在电化学能源转化的应用

摘要:电化学能源转化作为一种清洁高效的能源转化方式,是实现“双碳”目标的重要技术途径之一,而开发高性能催化剂,是提高电化学能源转化效率的关键手段。单原子催化剂兼具均相催化剂原子利用率高和非均相催化剂稳定易分离的优势, 在电催化能源转化领域展现出巨大的应用前景。铜(Cu)具有电导率高、 储量丰富、 环境友好的优势, 在电化学能源转化中占据重要地位。本文总结了 Cu单原子催化剂(SACs)的制备策略,如高温热解法、湿化学法、化学气相沉积法、电化学法等,介绍了该类材料在电催化 CO2还原反应(CO2RR)、氧还原反应(ORR)、电解水析氢反应(HER)及N2电化学还原(NRR)等电化学能源转化领域的研究进展和技术应用。最后,总结了Cu单原子在电催化领域所面临的挑战,并对其未来的应用前景进行展望。