磷酸铁锰锂材料的合成方法及结构改性的研究进展

摘要:锂离子电池因具有比能量高、循环使用寿命长、无记忆效应等特点而备受关注,并已广泛应用于日常生活中。在已有的锂离子电池正极材料中,磷酸铁锰锂正极材料具有能量密度高、放电比容量大、电压平台高等优点,是一种具有前景的锂离子电池正极材料,然而由于其低导电率和离子迁移速率慢等问题,一直制约着其发展。通过分析磷酸铁锰锂不同铁锰比例、颗粒尺寸及形貌对电化学性能的影响,指出铁锰物质的量比为 0.5∶0.5的小粒径多孔球状颗粒对提高电化学性能有积极的影响;并介绍了采用 Mg、Ti、Ni等离子掺杂或表面包覆改性方法对其进行优化,材料的性能会得到改善;最后对磷酸铁锰锂的发展趋势提出了一些建议,指出对合成工艺的改进和开展更深入的理论研究仍是今后的研究重点。

金属支撑固体氧化物燃料电池共烧结特性研究

摘要:在考虑电池整体热膨胀及陶瓷蠕变的情况下分析电极层和电解质层的烧结机制,阐明金属支撑固体氧化物燃料电池(MS-SOFC) 在不同烧结温度及晶粒尺寸下电极和电解质层微观结构的演变、残余应力的分布及变化规律。通过建立Skorohod-Olevsky Viscous Sintering (SOVS) 模型,模拟在不同烧结温度和不同晶粒尺寸下,MS-SOFC 的各层和各界面的相对密度、应力的分布和演化,并通过高温烧结实验揭示异种晶粒尺寸结构烧结后微观结构形貌的变化。结果表明,电解质和电极的相对密度、各层的残余应力值和突变幅度受到烧结温度的影响。当燃料电池各层材料初始晶粒尺寸较小时,烧结导致的致密化率非常明显,随着晶粒尺寸逐渐增大,其致密化率相对较小,且电池各层的残余应力值和突变幅度逐渐减小。纳米氧化钇稳定氧化锆(YSZ) 电解质层更容易烧结,且比亚微米YSZ 电解质层烧结后微观缺陷降低更多。MS-SOFC 烧结后,阴极和阳极的径向应力为拉伸应力,电解质的径向应力为压缩应力。轴向应力和剪切应力在拉压应力之间周期性变化。拥有微米晶的电极层能够在烧结后保持较大的孔隙率,而拥有纳米晶的电解质在提高电导率的同时还能够降低其致密化烧结温度。当晶体尺寸为纳米级时,残余应力值和分布对烧结温度很敏感。

可编织柔性纤维状水伏纳米发电机

摘要:可穿戴设备在医疗健康、物联网和机器人等领域具有广泛需求, 其发展具有小型化、轻量化、柔性化的趋势, 然而便携式、持续稳定的能源供给方式是限制其应用的瓶颈问题. 基于水伏效应的新型环境能源捕获技术为解决可穿戴设备的持续能源供给问题提供了新的机遇. 相关研究表明, 碳纳米材料在对水能的转换与利用中展现了独特的优势. 本文以导电炭黑为水伏材料, 通过简易的浸涂法及材料表面浸润性调控, 制备了水伏效应和原电池反应产能机制协同作用的可编织柔性纤维状水伏纳米发电机. 其在纯水及多种盐溶液中均能实现持续稳定的产电, 突破了目前水伏发电机对于水源中极低离子浓度要求的限制. 值得一提的是, 该水伏纳米发电机可以利用人体汗液直接发电, 有望作为柔性可穿戴设备稳定的能源供给方式, 解决柔性电子器件的持续能源供给问题.

基于可逆热致变色的动态体吸收太阳能光热存储相变材料

摘要:相变材料(phase change material, PCM)有望解决热能储存和热管理等方面的问题. 然而, 随着瞬态熔体前沿远离热源, 其能量密度和功率密度逐渐降低. 在太阳能直接热利用过程中, 传统充热的完成完全依赖于PCM本身的热扩散过程, 低热导限制了PCM的充热速率. 本文提出了基于可逆热致变色特性的动态相变材料(dynamicphase change material, Dyn PCM), 可以自动控制光热界面位移紧跟熔体前沿, 使相变材料在光热转换中的充热速率不受材料自身热导率限制. Dyn PCM由热致变色剂和主体PCM两部分组成, 热致变色剂以2-苯氨基-3-甲基-6-二丁氨基荧烷作为供电子体, 2,2-双(4-羟苯基)丙烷作为受电子体及4-苄氧基苯基乙基葵酸酯作为溶剂成功实现无色-黑色的变换. 主体PCM以石蜡为例, 其中含83.3 wt.%石蜡含量的Dyn PCM5潜热为154.38 kJ/kg, 仅比石蜡降低6.6%, 其透明态表现出与石蜡接近的透射率为91.2%. 对比表明, Dyn PCM5的充热速率比石蜡提升了260%.经80次循环后, Dyn PCM的基团未发生改变, 充放热性能及透射率稳定性优异, 仍具有良好的可逆的变色及充热能力. 因此, 本研究提出的热致变色复合Dyn PCM5是一种有前景的太阳能储热材料, 可进一步运用在太阳能直接吸热过程中.

钙钛矿组分和结构设计及其发光二极管器件性能研究进展

摘要:有机-无机杂化钙钛矿发光二极管(LED)的性能在短短几年时间内飞速提升, 近红外光器件的效率已达21.6%,绿光器件效率也达到20.3%, 达到可以和商业化的有机发光二极管媲美的水平; 即使是稍有逊色的稳定性方面也有很大进展, 报道的最长器件半衰期已达到250 h. 器件性能的飞速提升得益于钙钛矿本身优异的光电性质, 而且通过丰富的化学手段可进一步对钙钛矿材料的组分和结构进行调控, 从而优化器件性能. 本综述从组分设计、缺陷钝化和界面修饰的角度出发, 重点分析了组分和结构设计对钙钛矿LED器件效率和稳定性的影响, 最后对钙钛矿发光二极管的未来发展进行展望.

纳米线储能材料与器件新进展

摘要:纳米线电极材料在电化学储能领域备受关注, 是纳米与新能源技术的交叉和前沿. 纳米线拥有大的长径比、较高的比表面积、轴向连续电子传输特性与径向电子限域效应. 纳米线用作电极材料时, 由于与电解液的接触面积比较大以及反应离子的脱嵌距离短, 能大幅提升电极材料的电化学活性, 故被广泛应用于功能化储能器件. 本文介绍了纳米线原位表征技术以及纳米线在储能电极材料中的应用(离子电池、高能电池、超级电容器和微纳与柔性储能器件). 对纳米线储能材料与器件的研究与进展进行了概述, 并讨论了在电化学储能材料研究中所存在的挑战. 最后, 对纳米线储能材料与器件的发展趋势进行了展望.

锌电积用新型阳极的研究进展

摘要:铅阳极价格低廉且在酸性硫酸盐溶液中稳定而被用于生产高纯度的锌,但随着矿物品位降低,锌电解液环境变差,传统铅阳极的许多问题限制了其进一步发展,包括析氧电位过高、阳极溶解引起的阴极产品污染、力学性能差等。为解决这些问题,从几个不同方面对新型阳极进行阐述:(1)在铅合金中掺杂不同的元素(如Ag,Ca,Co,RE等),通过外加物质改善合金结构,提升铅阳极电催化活性,降低铅在电解液中的溶解;(2)应用不同加工工艺提升铅合金内部均匀致密程度,提升合金力学性能;(3)应用其他类型的阳极,如钛基阳极、铝基阳极、碳纤维阳极等防止铅合金本身性质带来的问题。介绍不同阳极改进方式的同时也提及了其制备工艺和电催化机制,为未来新型阳极的发展趋势指明了方向。

电动汽车退役动力电池中LiFePO4材料再生利用研究进展

摘要:随着“碳达峰、碳中和”目标的提出,新型环保的储能器件迎来了极大的发展前景。特别是,锂离子电池(LiB)凭借其能量密度高、使用寿命长等诸多优势在众多储能器件中脱颖而出。磷酸铁锂(LiFePO4)材料由于具有热稳定性好、循环次数高、服役时间长、无记忆效应等优势迅速成为电动汽车动力电池正极材料的主流。随着大规模 LiFePO4型电池退役浪潮的到来,如何处置和利用这些废旧电池已成为国内外亟需解决的热点问题。以 LiFePO4型电池的失效机理为基准,从宏观和微观两个角度分析了废 LiFePO4材料再生前后的变化,并从补偿锂和构建还原环境两个维度对废 LiFePO4材料直接再生技术的相关研究进展进行了综述,明确提出废 LiFePO4正极材料更适合走直接再生的回收路径,以期实现废 LiFePO4材料的科学回收。

金属卤化物钙钛矿纳米晶在荧光传感领域的应用进展

摘要:金属卤化物钙钛矿纳米晶因具独特的物理和化学特性,如高光吸收系数、窄发射光谱、高光致发光量子产率以及可调的组分与尺寸等,在发光二极管、太阳能电池、光电探测器、催化、激光、荧光传感等光电技术领域展现出广泛的应用潜力,已成为材料科学领域的研究热点。本文基于金属卤化物钙钛矿纳米晶在荧光传感领域的应用,重点归纳了金属卤化物钙钛矿纳米晶的制备技术、荧光传感机制及在该领域的应用研究进展;同时讨论了其在荧光传感领域应用中面临的稳定性问题及解决方案;最后,总结和展望了具有更高光学性能和稳定性的金属卤化物钙钛矿材料的发展方向。本文旨在通过对其在荧光传感领域应用的综述分析总结,为促进研究人员开发高效稳定的钙钛矿材料提供借鉴。

柔性钠离子电池研究进展

摘要:随着柔性电子产品需求的日益增长,柔性电池得到越来越多的研究和关注。目前,柔性锂离子电池由于高功率密度和高能量密度的特点,在柔性屏、可穿戴设备应用上取得了实质性的进展。然而,锂矿资源储量有限、分布不均的问题限制了电池的可持续发展。在寻求新型电池的道路上,钠离子电池引起了人们的关注。钠在地球中的存储量比锂更多,价格更低,这使得钠离子电池有望满足未来的市场需求。柔性钠离子电池的关键材料包括电极活性材料、电极集流体、电解质和隔膜。电极不仅需要高容量和优异的电导率,还要具有良好的机械柔韧性,保证柔性电池在各种形变(弯曲、拉伸、折叠等)下正常工作。柔性电解质和隔膜在保证电池安全的同时,还要保持与正负极之间具有稳定的界面结合。但这些关键材料不成熟、不完善的问题阻碍了柔性钠离子电池的发展。此外,普通袋式的柔性电池无法满足未来电子设备小型化和可穿戴的要求。创新实用的结构设计和适合大规模生产的制备技术也亟待发展。本文介绍了柔性钠离子电池电极材料(正负极活性材料和导电基底材料)、电解质、电池结构和制备工艺等方面的研究进展,对柔性电池现存的问题(比如成本高、安全性差、制备工艺复杂等)进行了分析探讨,最后展望了柔性钠离子电池未来的发展方向。