高能锂硫电池正极催化剂、负极保护材料的分析与展望

摘要:锂硫电池具有能量密度高、成本低、环境污染少等优势,是过去十年里最引人关注的储能系统之一,被认为是极有前途的新型二次电池。近年来,随着电动汽车的飞速发展,对高性能、长寿命电池的研究提出了极高的要求,锂硫电池的天然优越性能够满足该要求,并且展示了广泛的应用前景。然而由于电池运行过程中仍然存在着电极-电解质界面化学难以控制的问题,如何提高电池的性能和寿命引起了研究人员的广泛关注。随着各种类型高效正、负极材料的提出,锂硫电池的未来具有很好的发展前景。文章综述和讨论了最近的研究成果,从正极异质结构催化剂、单原子催化剂和负极保护材料这3 个方面全面总结了用于高活性锂硫电池的催化剂最新进展。其中:异质结构催化剂不仅可以将两种功能互补或相互增强的材料结合在一起,而且在界面处具有内部电场,可以增强锂电池中多硫化锂转化反应的动力学;单原子催化剂由于其在结构-活性关系和反应机理中的原子级适用性及具有原子精度的结构可调性为解决锂硫电池多硫化锂的穿梭等问题提供新的策略;负极材料不仅可以抑制多硫化锂的穿梭,而且可以稳定金属锂的表面。

大容量长时储能技术及其在油气行业的应用前景

摘要:大力发展风光可再生能源清洁电力是加速我国能源结构转型,构建新型电力系统和顺利达成“双碳” 目标的核心举措。我国油气行业拥有大量风光清洁能源丰富的沙漠、戈壁和荒漠等地域资源,而大容量长时储能是平抑清洁电力输出、构建多能互补新格局和建设智慧油气田的关键支撑技术。综述了我国储能行业发展的需求、现状和趋势,介绍了抽水蓄能、压缩空气储能、锂离子电池和铅酸电池等几种典型的储能技术,对比了其各自的优点、发展瓶颈和应用现状。重点阐述了全钒、铁铬和锌溴液流电池储能技术在光储一体化建设中的优势,着重分析了我国油气行业对储能的需求和产业布局,以及大容量长时储能技术在油气行业清洁替代和绿色转型过程中的应用前景。

锂离子电池富锂锰基正极材料面临的挑战及解决方案

摘要:随着消费类电子、电动汽车和储能等领域的迅猛发展,亟需提升以锂离子电池为代表的二次储能设备的能量密度,而正极材料是提升锂离子电池能量密度的关键。富锂锰基层状氧化物正极材料(LRM)因具有极高的理论比容量(>350 mA·h·g‒1)和可逆比容量(>250 mA·h·g‒1)被认为是最有前途的锂离子电池正极材料之一。然而,LRM 正极材料的首次Coulombic效率低、倍率/性能差以及快速的电压和容量衰减等问题,严重阻碍了其产业化应用。本文介绍了LRM正极材料的晶体结构及电化学机理等方面的研究进展,分析了LRM 存在的问题及起因。重点从形貌设计调控、掺杂、包覆、缺陷结构设计、梯度成分设计、层状/尖晶石异质结构构建以及电解液添加剂等方面全面介绍了LRM正极材料的改性策略,以期望为LRM正极的未来发展提供思路和指导,最终促进LRM 正极材料的实际应用。

锂离子电池温度状态: 定义、检测与估计

摘要:锂离子电池作为新型储能技术的重要载体, 其全生命周期的安全性和可靠性备受关注. 作为复杂的温度敏感型电化学系统, 随着能量密度上升和应用场合的拓展, 热效应引起的温度变化极大地影响锂离子电池性能. 相较于荷电状态、健康状态等, 电池温度状态能够直观地反映其内部工作状况和外部环境条件, 是未来智能电池管理系统中必不可少的物理量之一. 本文首先归纳了电池的4种温度表征指标: 表面温度、核心温度、体均温度及温度分布, 与此同时, 在模组层面讨论了温度极值和温度差值的适用性; 随后, 从温度检测和温度估计两方面对现有方法进行分类, 并系统阐述了各种温度检测估计方法的原理、优势以及局限性; 最后, 讨论了电池温度状态领域面临的挑战, 并提出了未来的发展方向.

钠离子电池炭基负极材料研究进展

摘要:钠离子电池是目前新兴的低成本储能技术,被认为是最有可能取代锂离子电池成为大规模储能应用的理想电源之一。在目前所研究的储钠负极材料中,炭基负极原料丰富、成本低廉、可逆容量较大以及倍率性能良好等优点,是目前最具应用前景的储钠负极材料。本文首先简要介绍了钠离子电池概念及其工作原理,随后对石墨、软炭和硬炭材料的储钠行为及国内外研究进展进行了综述,阐明了硬炭材料作为理想的储钠炭负极材料的优势。最后,对上述负极材料的发展前景进行了展望。

碳材料在钙钛矿太阳能电池中的应用

摘要:钙钛矿太阳能电池具有材料成本低廉、生产工艺简单、光电转换效率高等优点,发展前景十分光明。碳材料因其价格低廉、高导电性、疏水性和化学稳定性等特点,被应用在钙钛矿太阳能电池的各个组成部分,用于提高电池性能和降低成本。本文根据应用在钙钛矿太阳能电池中的碳材料的维数进行分类,分别介绍了零维的C60、碳量子点和石墨烯量子点,一维的碳纳米管,二维的石墨烯及其衍生物、石墨炔和三维的石墨等在钙钛矿太阳能电池中的应用,对于将来实现钙钛矿太阳能电池的低成本商业化和大规模制造具有重要意义。

新能源用钢管的应用现状、需求分析及思考

摘要:“双碳”战略下新能源及相关产业发展给钢管带来新的应用场景,对钢管的功能和性能提出新的需求。聚焦于碳捕获、利用与封存技术领域中的CO2输送用管、氢能领域中的氢气输送用管和储能领域中的盐穴压缩空气储能用注采管,总结了新能源用钢管的应用现状和研究进展,分析了各领域用管需求,并就“双碳”背景下新能源用钢管的基础理论研究、关键技术开发和标准体系建设等方面进行了思考,提出了建议。

热基锌铝镁镀层材料在光伏支架领域的应用

摘要:锌铝镁镀层钢板产品是在传统热镀纯锌镀层产品的基础上,在镀液中添加适量的Al、Mg以及其他微量合金元素得到的合金镀层产品。因其具有良好的耐腐蚀、耐磨损、切口自愈能力和低摩擦因数等特性,在众多领域具有巨大应用前景。本文从光伏支架中钢材的使用现状出发,对热基锌铝镁材料的发展和应用现状进行综述,分析了热基锌铝镁材料在光伏支架中应用的优势和的可行性,发现热基锌铝镁材料直接采用酸洗后的热轧板为原料,可生产规格更厚的产品,更好地满足光伏行业的需求。

金属化合物在锂硫电池正极材料及夹层中的应用

摘要:在能源危机的驱使下,电动汽车以及大型储能装置的快速发展需要高能量密度的锂二次电池来实现,锂硫电池硫电极因具有高理论比容量和能量密度而倍受关注。此外,单质硫具有储量丰富、成本低和无毒等优点,使得锂硫电池更具有商业竞争力,因此锂硫电池被认为是最有前途的二次电池之一。然而,锂硫电池依然存在电导率低、穿梭效应、体积膨胀和锂枝晶等问题,这限制其广泛应用。因此,研究者们从正极材料和夹层着手,除了对正极材料的导电性加以改善之外,主要从限制多硫化物的穿梭效应和缓冲正极体积膨胀进行研究。研究发现,相比碳基和聚合物基正极材料,金属化合物基正极材料可以更好地改善锂硫电池的倍率性能和循环稳定性。此外,金属化合物材料作为夹层时同样可以有效缓解这些问题,能够更好地抑制多硫化物的溶解和扩散,减少穿梭效应,提高锂硫电池的电化学性能。一些金属氧化物、金属硫化物、金属氮化物、金属磷化物等作为锂硫电池正极材料或夹层都取得了重大进展。对于部分极性金属化合物而言,其不仅能化学吸附充放电中间产物多硫化物,有效改善硫正极的循环稳定性,而且还能在氧化还原反应中表现出电催化活性,加快多硫化物的转化,提高硫正极的倍率性能。本文综述了近年来金属化合物基正极材料及夹层的研究进展并对其发展前景进行了展望,以期为制备优异性能的锂硫电池正极材料及夹层提供参考。

锂离子电池用纳米碳材料研究进展

摘要:锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2) 通过异质原子掺杂改善纳米碳材料的电化学性能;(3) 将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来在锂离子电池应用中需要解决的关键问题进行了总结与展望。