热基锌铝镁镀层材料在光伏支架领域的应用

摘要:锌铝镁镀层钢板产品是在传统热镀纯锌镀层产品的基础上,在镀液中添加适量的Al、Mg以及其他微量合金元素得到的合金镀层产品。因其具有良好的耐腐蚀、耐磨损、切口自愈能力和低摩擦因数等特性,在众多领域具有巨大应用前景。本文从光伏支架中钢材的使用现状出发,对热基锌铝镁材料的发展和应用现状进行综述,分析了热基锌铝镁材料在光伏支架中应用的优势和的可行性,发现热基锌铝镁材料直接采用酸洗后的热轧板为原料,可生产规格更厚的产品,更好地满足光伏行业的需求。

新型重力储能的原理效率及其选材选址分析

摘要:近年来,我国把非化石能源放在能源发展优先位置,坚持绿色发展导向,优先发展可再生能源。随着信息化时代的发展,我国工业用电量飞速增长,在这样的背景下,单一使用绿色能源作为电力的供给端,难以稳定持续地满足高峰期和低谷期的电力需求。电力储能技术是目前解决这一矛盾的重要手段,其中重力储能技术由于其绿色环保、能量转化效率高、前期成本低、对地形水源要求低等优点,已成为新型储能方式的重要研究方向。目前已有的重力储能形式有三种,包括塔吊形式、依托山体形式、依托废弃矿井形式等;重力储能技术在国内仍处于起步阶段,很多的技术和理论研究尚不完善,如重力储能系统的原理及安全环保问题、能量转换效率问题、电站选址问题、重块选材问题、适用性问题等。本文基于国内外的储能环境,对三种重力储能形式的原理及工作模式进行了分析。在此基础上,将三种储能模式的效率等参数进行了对比分析,最后从材料强度、使用寿命和地层稳定性等角度出发,针对重力储能系统的选材及电站选址提出了考虑因素及建议,为我国重力储能领域提供了理论支撑,填补了储能技术在储能原理及选材选址方面的空白。

相变储能材料及其应用研究进展

摘要:人类在面临化石能源枯竭的同时,对能量的利用率依然还停留在较低的水平。因此,在大力发展新能源的同时,着力研发节能环保新材料新技术具有十分重要的意义。相变材料(phase-change materials,PCM)是一种节能环保的储能材料,它在蓄热与温控等领域具有大规模商业应用的潜力。本文首先对相变储能材料的基本特征、工作原理以及分类等方面作了简要的介绍;并就相变储能材料在温控与蓄热等领域的应用与发展情况进行了具体的分析,指出了PCM的性能是制约其深入广泛应用的主要技术障碍。在此基础上,详细评述了PCM存在的主要问题以及针对这些问题开展的相关研究工作和最新发展动态,指出通过功能复合等新技术优化材料性能、设计新材料体系、拓展新的应用领域将是相变储能材料未来的主要发展方向。

激光加工在汽轮机叶片中的应用现状

摘要:利用激光作为热源的多种加工方法均能获得与传统加工方法相当的加工效果,如果充分利用激光高能量密度的特性,还能取得更高的精度、更佳的性能,并且可以解决传统加工方法无法解决的工程难题。简要介绍了激光加工的基础并回顾了激光加工技术在汽轮机制造中叶片制造、表面改性、叶片修复等典型应用,论述了目前的应用状态,展望了未来面临的挑战。

水系锌离子电池的最新研究进展

摘要:储能具有能量密度高、响应时间快、维护成本低、安装灵活方便等特点,是未来储能技术的热点发展方向。近年来,锌离子电池由于其成本低廉、比容量高等优点,具有良好的发展前景。水系锌离子电池正极主要有钒基化合物、锰基化合物和普鲁士蓝类似物; 负极主要为锌负极;电解液包括水凝胶电解液、离子液、盐包水电解液和具有添加物的电解液。然而,对正极材料而言,锰基化合物中的Mn2+溶解、钒基化合物放电电压过低、普鲁士蓝类似物比容量较低都影响了锌离子电池的性能。锌电极作为锌离子电池负极面临的挑战主要包括: ( 1) 锌枝晶生长; ( 2) 电解液持续消耗和自放电问题; ( 3) 不可逆副产物的产生。水系电解液在充放电过程中会发生水分解及蒸发,影响电池性能。研究者近年来致力于通过掺杂其他元素、表面涂覆与包覆等方式制备新型电极材料来改善水系锌离子电池正极,通过界面修饰、进行新型锌负极的三维结构设计以及新型电解液的设计研发来减少锌枝晶产生,同时向电解液中添加其他溶液可以拓宽电化学窗口,以得到高性能的水系锌离子电池。目前,向正极材料中掺杂钙、镁、钴等元素和表面包覆以聚吡咯为主的高分子导电聚合物制备的新型电极材料已被成功应用。金属离子合适比例的掺杂不仅可以提高材料容量,同时也形成了有利于Zn2+脱嵌的稳定结构。对锌负极修饰如二氧化钛( TiO2 ) 、金纳米颗粒、聚乙烯醇缩丁醛( PVB) 的表面镀层,或在电解液中添加合适的添加剂,能够提高锌负极的可逆性和稳定性,抑制锌枝晶的生长。上述方法可以直接或间接地提高水系锌离子电池的循环稳定性和库仑效率。本文首先介绍了锌离子电池概况,然后重点阐述了目前水系锌离子电池正极材料、负极材料、电解液和隔膜的研究进展,包括各方面存在的挑战及现有的解决策略,最后对水系锌离子电池电极材料、电解液和隔膜未来的发展进行了展望,为开发制备高性能水系锌离子电池提供了思路。

面向电化学储能的多孔炭材料

摘要:多孔炭材料具有质量轻、比表面积大、导电性好和稳定性高的优点,在电化学储能领域得到了广泛的应用。近几十年来,多孔炭材料的结构构筑和功能化设计取得了较大的进步。本文以多孔炭在不同储能器件中的应用发展为导向,结合多孔炭结构设计和功能化发展,综述了其在锂离子电池、锂空气电池、锂硫电池、锂负极保护、钠离子电池、钾离子电池等电化学储能器件中的研究成果和进展,最后总结了多孔炭的结构控制和功能化的策略,并展望了多孔炭材料未来研究的方向和挑战。

空间太阳电池柔性封装材料与技术研究进展

摘要:基于深空探测、空间电站以及商业航天、微纳卫星、长航时临近空间飞行等任务需求,高效率、轻量化、柔性化、高可靠性是未来空间太阳电池阵发展的主题。太阳电池阵由传统的刚性电池阵、半刚性电池阵向柔性电池阵发展。航天器在轨服役过程中需遭受带电粒子辐射、紫外辐射、原子氧等空间环境,因此需在电池表面封装防护层以减缓电池性能退化。作为太阳电池辐射屏蔽层,盖片的辐射防护性能、光学性能、力学性能是保证电池长期在轨高效稳定运行的核心要素。本文总结了近年来聚硅氧烷、透明聚酰亚胺、赝形玻璃盖片等太阳电池柔性封装材料研究进展,归纳了相关的空间环境模拟试验与在轨暴露试验结果,最后针对太阳电池柔性封装材料与技术的发展及应用进行了探讨展望。

钙钛矿太阳能电池稳定性研究进展及模组产业化趋势

摘要:有机无机杂化钙钛矿材料具有优异的光电特性,在光伏、显示和传感领域均获得了广泛关注。近年来,钙钛矿太阳能电池技术发展迅速,在效率提升和面积放大方面不断取得突破,但钙钛矿材料和器件的稳定性问题一直没能得到根本性的解决,严重制约了钙钛矿光伏器件的实用性能及商业化推广进程。钙钛矿太阳能电池的不稳定性来源于器件中钙钛矿层、电荷传输材料和电极材料的失效,失效原因主要包括光照、水分、温度和氧气等环境因素,因此深入理解各因素对钙钛矿太阳能电池稳定性的作用机理至关重要。此外,与晶硅和其他薄膜电池相比,钙钛矿太阳能电池在材料性能、器件结构等方面都有较大差别。目前晶硅电池和其他薄膜电池的稳定性评价方法和测试手段对钙钛矿太阳能电池不能完全适用,为了使不同机构间钙钛矿太阳能电池稳定性的测试结果可以对比,需要统一稳定性测试标准。本文总结了钙钛矿材料及光伏器件稳定性的影响因素,剖析了光照、水分、温度和氧气等环境因素对钙钛矿器件稳定性的作用机理,并对提升钙钛矿太阳能电池稳定性的方法进行了综述。最后分析了钙钛矿太阳能电池稳定性的评价方法和测试手段,并对钙钛矿太阳能电池的未来发展方向进行了预测,以期为钙钛矿太阳能电池商业化应用提供新思路。

太阳能电池多晶硅表面激光制绒技术研究进展

摘要:作为一种绿色可持续的清洁能源,可以转化为热能或电能,是传统能源最重要的替代品。多晶硅太阳能电池由于具有较低的成本而被广泛用于光伏发电领域,降低多晶硅片表面反射率是提升多晶硅太阳能电池效率的重要手段之一。本文分析了硅基太阳能绒面微结构的吸光原理,梳理了各类常见制绒方法。在此基础之上,总结了激光制绒的各类加工方法,概括了不同激光加工方法对多晶硅片表面绒面产生的相应效果,其中,激光复合方法制绒的效果普遍优于单一激光制绒。随后从激光加工工艺的角度,分析了激光加工主要参数对绒面微结构形貌的影响:由于不同波长下多晶硅材料的吸收率不同,各加工效果亦不相同;通过调整脉冲激光加工中的重复频率、扫描速度等参数,可影响制绒面凹坑间距进而改变绒面微结构的密度,通过调整功率、单脉冲能量等因素则影响微结构的烧蚀程度或深度;而入射角度、能量分布及脉宽对制绒亦有明显效果。对比发现,各典型绒面微结构的形貌中,V形纹理比U形纹理更能有效地捕捉吸收光线,而二维复合型陷光微结构比单一型陷光微结构吸光性更好。在此基础之上,论述了化学后处理对提升多晶硅片绒面质量的作用体现,表明化学后处理能改善或消除多晶硅片经激光制绒后形成的熔覆层等相关缺陷,经化学后处理后制成的多晶硅太阳能电池效率显著提高。文章最后对太阳能电池多晶硅表面激光制绒技术进行了总结与展望。

高电压钴酸锂正极材料研究进展

摘要:钴酸锂( LiCoO2)因具有较高比容量、高放电平台及压实密度等优点,是目前用于3C等消费类电池的主要正极活性材料。随着电子产品的轻量化、微型化发展,人们对钴酸锂体系锂离子电池能量密度和循环性能的要求逐渐提高,如何有效提升能量密度是当前亟需解决的问题。提升能量密度的方法主要有开发高比容量活性材料、提升材料的压实密度和提高工作电压。其中,提高工作电压是现阶段最有效的方式。在高充电截止电压(>4.4V)下,钴酸锂脱锂量增加,更多活性Li+参与脱嵌过程,使得材料的实际克容量得到显著提升。同时,高工作电压会造成材料的结构发生不可逆相转变、界面副反应增多等问题,导致材料性能降低,电池容量衰减。针对这些问题,近些年研究者对高电压钴酸锂做了大量改性研究,解决方法主要集中在体相掺杂和表面包覆。体相掺杂能提高材料的结构稳定性,延缓层状结构坍塌。表面包覆对缓解界面副反应有显著的作用。通过改性来实现相转变及界面副反应的有效控制对推动高电压钴酸锂的商业化发展具有重要意义。本文主要以高电压钴酸锂材料作为切入点,总结了钴酸锂的结构组成、制备方法以及高工作电压下性能衰减原因,重点讨论了高电压钴酸锂的体相掺杂和包覆改性的研究进展,深入分析了改性对材料结构及电化学性能的影响,最后对高电压钴酸锂正极材料的发展趋势进行展望。