碳基负极材料储钾应用及机制研究进展

摘要:因钾资源储量丰富,价格低廉,且具有类似于锂的物化特性,钾离子电池(KIBs)的推广应用可解决当前锂离子电池供不应求的问题。比较钠离子而言,钾离子可在商业化石墨负极中可逆嵌脱,这对于钾离子电池的产业化发展具有重大意义。然而钾离子因尺寸较大,嵌脱行为缓慢,引起的体积膨胀剧烈,成为电极材料面临的共性问题。近年来,为寻找具有良好嵌钾能力的材料,多种类型的电极体系被开发出来,其中碳基材料因制备简单、廉价环保、稳定性好的特点,被视为最具储钾前景的关键材料。本文系统概述了几种代表性碳基负极材料(如石墨、石墨烯、硬碳、软碳)在KIBs中的研究现状,阐述了各自存在的优势与不足;重点探讨了碳基材料的储钾机制,分析了由钾离子插层、吸附、填充行为组成的3种储钾机制及对电化学性能的影响,并指出在电极表面发生的离子吸附和填充方式呈现出电容效应,更适合于高性能的可逆储钾。最后,对KIBs的下一步研究方向和应用前景进行展望。

水系锌离子电池钒基正极材料储能机制、存在的问题及其改性策略

摘要:中性或弱酸性体系下的水系锌离子电池(AZIBs)因高安全、低成本及高能量密度等特性成为近年来研究的热点。其中,备受关注的钒基化合物具有比容量高、结构灵活多样等优点在AZIBs领域展现出了广阔的市场应用前景。主要总结了钒基材料的4种反应机制并叙述了钒基正极材料在AZIBs中的研究进展, 在AZIBs中,Zn2+有着较大的离子半径,随着循环的进行Zn2+不断嵌入/脱出, 引起材料结构的变化,从而导致活性物质从导电集流体上脱落,严重影响电池的循环寿命; 钒基材料本身的导电性能较差,不利于电子的转移;钒基材料在AZIBs中的电压窗口比较窄。针对这些问题,主要从离子和分子预嵌、表面修饰和复合材料制备、缺陷设计及金属离子掺杂、自支撑电极结构设计、电解液优化等5个方面进行了总结,并对未来AZIBs钒基正极材料的研究方向进行了总结与展望。

人工智能在可再生能源材料研发领域的研究进展

摘要:近年来煤炭、石油、天然气等传统能源逐渐枯竭,大量化石能源的使用造成环境污染。为了降低二氧化碳的排放量,国家积极推动风、水电、氢能等可再生能源的发展,而这些能源技术的推广应用的关键是新材料的研发。目前新材料的研发主要依赖于研究者根据材料结构以及其用于某一特定体系的预期催化活性为目标进行实验优化,导致新材料研发过程缓慢。随着计算材料学的进一步发展,研究人员整合了大量关于材料结构及性能表征的材料数据库,通过比较逐步优化筛选新材料。综述了当前材料开发的设计思路以及合成方法,以人工智能(AI)为着眼点阐述了近年来基于AI方法设计、制备可再生能源材料过程中的模型与算法,并总结了AI用于材料设计方面的研究意义和发展过程,最后对AI方法用以可再生能源材料设计、制备的发展进行了展望,介绍了本课题组提出的材料优化模型,并且列举了该模型成功应用于电解水析氢以及硼氢化钠制氢的材料优化的案例。未来,AI技术在新材料的理论计算、合成设计、性能预测、材料微观结构表征分析等方面具有非常广阔应用前景。

Pd基二元合金膜应用研究进展

摘要:Pd基合金膜对氢气具有唯一渗透性和高渗透率,在氢气生产、应用、回收、探测等领域有着广阔的应用前景。PdAg,PdCu,PdAu,PdPt,PdRu为近年来Pd基二元合金膜的研究热点,对它们的研究重心也逐渐由提高合金膜的氢渗透性能,转向了对循环稳定性、高温稳定性、抗毒化性能及膜反应转化率等综合性能的优化。其中PdAg与PdCu合金膜的技术成熟度高,已在具有商业价值的重整制氢反应器及氢气净化器中投入使用。PdAu,PdPt,PdRu合金膜在实验研究中的优异表现,也展示了其在商业应用中的巨大潜能。介绍了上述几种Pd合金膜在重整制氢、脱氢加氢反应器及氢纯化器中的最新研究进展,讨论了其在实际应用中面临的问题与挑战, 提出了不同Pd合金膜可适应的服役条件及可行的优化方案。最后对Pd合金膜开发与应用的发展趋势作了展望,指出了Pd合金膜抗毒化性能的提升仍然是未来研究的重点。

锂离子电池磷酸锰铁锂正极材料研究进展

摘要:磷酸锰铁锂兼具LiFePO4结构稳定性好和LiMnPO4工作电压高(4.10V(vs.Li/Li+))的优点, 其能量密度相较于LiFePO4可提升15%-20%,是一种极具产业化应用前景的锂离子电池(LIBs)正极材料。然而,该材料的电化学性能受到了其离子/电子传输能力弱和晶体结构稳定性不足等问题的严重限制,难以满足产业化应用需求。总结了LiMn1-xFexPO4正极材料近年来的研究进展,从晶体结构、储锂机制、制备方法和性能提升策略等方面进行了系统阐述和深入分析。在此基础之上,对LiMn1-xFexPO正极材料的产业化发展路径进行了总结与展望,对LiMn1-xFexPO4正极材料电化学储锂机制、制备方法与性能提升策略的深入分析,可为该材料的基础研究和产业开发提供重要理论指导。

钛基金属有机框架材料光催化分解水制氢的研究进展

摘要:钛基金属有机框架(Ti-MOFs)因其优异的光电性质和光催化性能、化学稳定性和低毒性以及多样化的结构,被认为是光催化分解水制氢领域中最具吸引力的MOFs之一。综述了近年来Ti-MOFs及其复合材料和衍生多孔材料在光催化制氢领域的进展。通过染料敏化或选择合适的官能团和金属节点会对Ti-MOFs的光响应及光催化活性产生重要影响。为进一步提高光催化析氢性能,可引入金属离子或与其他半导体结合形成多功能复合材料。此外, 通过在合适的条件下煅烧Ti-MOFs前驱体可制备更多新颖高效的光催化剂。最后,从关键的角度讨论了Ti-MOFs及其衍生多孔材料未来在光催化分解水制氢领域的机遇和挑战。

金属有机骨架材料在镁基储氢材料中的应用

摘要:能量密度高、热值大、资源丰富、无污染、可储存、可再生、可燃烧和可发电的氢能, 被誉为21世纪解决能源危机和缓解温室效应的“终极能源”。 MgH2因其较高的理论储氢容量, 有望成为未来车载氢能源载体而备受关注,但其过高的热力学稳定性、缓慢的吸放氢动力学等缺点限制了其工程应用。比表面积高、结构性质可调以及金属离子可高效利用的金属有机骨架(MOFs)材料,在镁基材料储氢性能的改善方面展现出良好的应用前景。概述了MOFs材料对镁基材料储氢性能的催化掺杂改性、纳米限域催化改性,以及MOFs材料的常见制备方法,并对该领域的研究前景进行展望。

柔性、可拉伸变形微型热电器件的设计与集成

摘要:在能源匮乏、环境污染严重的今天,研发可循环利用、环境友好的新型能源材料与器件具有重要意义。热电材料可直接实现热能与电能的相互转换,为解决这一问题提供了新的途径。特别是,近年来由于柔性热电器件展现出自供电、可穿戴等优势,受到了人们的高度重视。本工作通过引入聚二甲基硅氧烷(polydimethylsiloxane,PDMS)基底,利用单壁碳纳米管(single-wall carbon nanotube,SWCNT)/Bi2Te3热电复合薄膜材料优异的热电性能和柔韧性,设计制作了一种可拉伸变形的三维拱形结构的微型热电发电器件。该器件充分利用薄膜材料面内最佳热电性能方向,通过器件内外温差获得热-电性能转换,在电极两端产生电势差,实现发电。该微型柔性热电器件在温差为4 K时,输出电压为4.8mV,最大输出功率达2.6×10-9 W,功率密度为3.9×10-9 W/cm2,器件的最小弯曲半径为3mm。这种微型柔性热电器件的制备工艺简单易行、成本低廉,为柔性热电薄膜发电器件的研制提供了新途径。

镁离子电池的工作原理与关键材料

摘要:镁离子电池具有原料丰富、成本低廉、环境友好以及高体积比容量等优点,近年来备受广泛研究。然而,充放电过程中缓慢的Mg2+ 扩散动力学性能、镁金属负极表面钝化层的形成以及电解液对空气敏感、腐蚀性强与电压窗口低等问题阻碍了其发展和实际应用。探索合适的电极材料以及与之兼容性好的电解液对镁离子电池的发展至关重要。简述了镁离子电池的工作原理,总结了镁离子电池正极、负极材料以及电解质的研究现状,并探讨了它们存在的问题以及相应的解决策略,旨在推动镁离子电池的进一步发展。

低温金属离子电池负极材料的研究进展

摘要:环境污染与温室效应的日益严重促进了清洁二次能源的发展与利用。具有高能量密度、环境友好等特性的锂离子电池成为最佳的储能载体。但当温度低于0℃时,传统石墨负极难嵌锂,电池性能急剧恶化,且低温充电时易析锂引发安全问题。为了满足锂离子电池的低温应用需求,通过改变电解液成分使其熔点降低,并调节SEI成分与去溶剂化过程,能够降低电荷转移阻抗,但石墨负极的本质属性使其低温应用受到限制。为从根源上解决锂离子电池低温性能差的问题,需要寻找具有适中工作电位、高离子扩散能力、高容量的新型负极材料替代传统石墨负极。嵌入式负极材料中,钛酸锂和二氧化钛具有较好的低温与倍率性能,但能量密度较低,应用范围受到限制,研究重点在于进一步挖掘其低温高倍率能力,使其应用在较为恶劣的服役环境中。合金的嵌锂反应在低温下较易进行,并且能够提供较高容量,其是极具潜力的锂离子电池低温负极材料,可以通过复合结构设计与表面改性提升其低温性能与循环寿命。基于转化反应的负极材料通常具有较高的赝电容效应,较快的表面反应受温度的影响较小,能够在低温下实现快速的充放电,通过纳米结构设计等方法能够进一步增强材料的赝电容效应。尽管Na、K、Mg 等新型金属离子电池能量密度较低,但资源丰富,并且本征低温性能优于锂离子电池,在寻找与之适配的负极材料后有望成为重要的低温储能器件。本文根据金属离子在负极材料中的存储方式来分类,综述了低温锂离子电池以及新型金属离子电池负极材料的研究进展,并展望了低温负极材料的发展趋势。