固体氧化物燃料电池在移动交通领域的应用及研究进展

摘要: 固体氧化物燃料电池(solid oxide fuel cell, SOFC)是一种可以将化学能直接转化为电能的能量转换技术,具有效率高、燃料选择灵活、杂质耐受能力强等特点。近年来,人们越来越重视SOFC在移动交通领域的应用。从SOFC的工作原理出发,重点分析SOFC在移动交通领域的应用优势,并介绍SOFC在移动交通中的应用形式,包括作为辅助电力单元和动力系统,并计算出其作为动力系统的油井-车轮(well to wheel, WTW)效率为34%»39%,远高于内燃机(14%»17%) 和电池(27%),展现了SOFC作为动力系统的巨大潜力。接着,重点讨论SOFC发电系统的研究进展,包括原理性验证、能效提高和作为动力系统的性能研究等。最后, 总结了目前SOFC在移动交通领域的应用现状,并对其应用前景进行展望。 SOFC在移动交通领域有巨大的应用潜力,将为交通领域脱碳开辟新的路径。

电聚合薄膜在钙钛矿电池中的应用

摘要:目前,钙钛矿太阳能电池(perovskite solar cell, PSC)的效率(25.8%) 已经可以与硅基太阳能电池相媲美,但是长期稳定性不高是其开展商业化应用亟需解决的问题之一。电化学聚合作为一种制备电活性导电聚合物薄膜的方法,可以有效降低材料和器件制备的成本;同时,化学交联的电聚合薄膜具有较好的稳定性,能有效提高器件的稳定性。总结了将交联的电聚合薄膜作为空穴传输层(hole transporting layer, HTL)或电子传输层(electrontransporting layer, ETL)来开发稳定和高效的钙钛矿太阳能电池,并论述了电聚合薄膜在钙钛矿太阳能电池未来的研究重点。

氢能与燃料电池关键科学技术:挑战与前景

摘要: 氢能是可持续的二次清洁能源,产业链主要包括氢气的制取、储存、运输和应用等环节. 燃料电池是氢能利用的主要方式, 处于产业链的核心地位。以氢能产业链为主线,围绕氢能燃料电池产业化进展,对制氢、储氢、加氢站、氢能燃料电池电堆及关键材料, 以及车用燃料电池系统关键部件的技术特征、产业化进展、发展现状及存在的挑战进行了概述,尤其对中国燃料电池产业链的发展现状进行了重点介绍。为了加速氢能与燃料电池真正意义上的产业化, 还提出了几点需要克服挑战的研发方向。

储能钠电池技术发展的挑战与思考

摘要:储能安全是国家能源安全的重要方面,是国民经济发展的重要支撑,对国家安全、可持续发展以及社会稳定具有重要的影响。钠电池技术兼具高功率密度、高能量密度、低成本以及高安全性等优势,成为一类重要的大规模储能技术。本文重点介绍了包括钠硫电池和钠-金属氯化物电池等在内的典型钠电池体系的技术优势和应用场景,并通过分析钠电池技术在国内外的发展与应用现状提出了我国钠电池技术可能的发展方向并给出了相应的建议,包括支持储能钠电池相关材料科学的研究和工程化技术攻关、推动储能钠电池相关上下游产业的聚集发展、建立健全储能钠电池的相关标准和性能评价平台等措施,以提升我国储能钠电池技术的研发水平和技术成熟度,为我国的能源安全建设带来新的可靠选择。

柔性钠离子电池研究进展

摘要:随着柔性电子产品需求的日益增长,柔性电池得到越来越多的研究和关注。目前,柔性锂离子电池由于高功率密度和高能量密度的特点,在柔性屏、可穿戴设备应用上取得了实质性的进展。然而,锂矿资源储量有限、分布不均的问题限制了电池的可持续发展。在寻求新型电池的道路上,钠离子电池引起了人们的关注。钠在地球中的存储量比锂更多,价格更低,这使得钠离子电池有望满足未来的市场需求。柔性钠离子电池的关键材料包括电极活性材料、电极集流体、电解质和隔膜。电极不仅需要高容量和优异的电导率,还要具有良好的机械柔韧性,保证柔性电池在各种形变(弯曲、拉伸、折叠等)下正常工作。柔性电解质和隔膜在保证电池安全的同时,还要保持与正负极之间具有稳定的界面结合。但这些关键材料不成熟、不完善的问题阻碍了柔性钠离子电池的发展。此外,普通袋式的柔性电池无法满足未来电子设备小型化和可穿戴的要求。创新实用的结构设计和适合大规模生产的制备技术也亟待发展。本文介绍了柔性钠离子电池电极材料(正负极活性材料和导电基底材料)、电解质、电池结构和制备工艺等方面的研究进展,对柔性电池现存的问题(比如成本高、安全性差、制备工艺复杂等)进行了分析探讨,最后展望了柔性钠离子电池未来的发展方向。

面向电化学储能的多孔炭材料

摘要:多孔炭材料具有质量轻、比表面积大、导电性好和稳定性高的优点,在电化学储能领域得到了广泛的应用。近几十年来,多孔炭材料的结构构筑和功能化设计取得了较大的进步。本文以多孔炭在不同储能器件中的应用发展为导向,结合多孔炭结构设计和功能化发展,综述了其在锂离子电池、锂空气电池、锂硫电池、锂负极保护、钠离子电池、钾离子电池等电化学储能器件中的研究成果和进展,最后总结了多孔炭的结构控制和功能化的策略,并展望了多孔炭材料未来研究的方向和挑战。

相变储能材料及其应用研究进展

摘要:人类在面临化石能源枯竭的同时,对能量的利用率依然还停留在较低的水平。因此,在大力发展新能源的同时,着力研发节能环保新材料新技术具有十分重要的意义。相变材料(phase-change materials,PCM)是一种节能环保的储能材料,它在蓄热与温控等领域具有大规模商业应用的潜力。本文首先对相变储能材料的基本特征、工作原理以及分类等方面作了简要的介绍;并就相变储能材料在温控与蓄热等领域的应用与发展情况进行了具体的分析,指出了PCM的性能是制约其深入广泛应用的主要技术障碍。在此基础上,详细评述了PCM存在的主要问题以及针对这些问题开展的相关研究工作和最新发展动态,指出通过功能复合等新技术优化材料性能、设计新材料体系、拓展新的应用领域将是相变储能材料未来的主要发展方向。

“蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用

摘要:“蛋黄蛋壳”结构纳米材料,具有易于调控的“蛋黄”、“蛋壳”和“空腔”结构,可视作“纳米反应器”,在催化、储能等领域表现出显著的应用潜力。尤其在电化学能源存储和转换方面,该结构纳米电极具有大的比表面积和独特的核壳结构,在充放电过程中可缓解电极的体积变化,提供快速的离子/电子输运通道,强化中间产物的吸附和提升转换反应效率等,能显著提高电极稳定性、倍率性能和循环性能,是一类较为理想的电极材料。本文针对“蛋黄蛋壳”结构纳米电极在锂/ 钠离子电池、锂硫电池等新兴二次电池领域的实际应用,总结了具有该结构纳米电极的设计与合成策略,包括:模板法、奥斯特瓦尔德熟化、电化学置换、克肯达尔效应等,评述了各种策略的优缺点以及电极材料的应用进展,最后对该类材料在锂/钠体系及锂硫电池二次电池方面的研究与应用前景进行了展望。

二维钙钛矿光伏器件

摘要:有机-无机杂化卤化物钙钛矿太阳能电池(perovskite solar cells, PSCs) 由于其成本低廉、制备工艺简单、光电转换率高等优点引起了越来越多的关注,在下一代半导体光伏技术中显示出巨大的发展潜力。然而PSCs 器件在商业化生产应用之前,必须解决某些关键问题,例如器件在湿度、光照和过热条件下缺乏稳定性,性能会急剧衰退。层状二维(two-dimensional, 2D)钙钛矿由于其优异的环境稳定性而受到研究人员的广泛关注。通过引入不同种类的疏水性大体积有机铵阳离子可以在钙钛矿体内形成稳定的2D 结构。然而,由于绝缘有机间隔阳离子的存在,使其电荷输运能力受阻并影响光电转换性能。本文根据不同种类2D钙钛矿光伏器件的发展进程,总结了影响2D 钙钛矿结构和性能的关键问题,如晶体垂直取向设计、量子阱调控和有机层间隔阳离子替换工程等。最后对2D PSCs 的未来发展进行展望。

耐候钢用于光伏支架的耐腐蚀优势

摘要:金属腐蚀给光伏支架带来了巨大的经济损失及安全隐患,在不断的研究过程中,针对钢材防腐,提出了各种各样的防腐方法:保护层法、电化学保护法、外加电流保护、用电镀、热镀、喷镀等;但是这些方法不仅工艺比较繁琐,而且增加生产成本,容易造成环境污染,破坏生态环境。在市场需求及国家政策的推动下,耐候钢成为了首要选择。耐候耐蚀钢,在冶炼工艺中加入Cu、P、Cr、Ni、Mn 等几十种稀有元素,使钢体表面在大气环境下逐渐形成非常致密超薄、牢固的氧化层(钝化层),隔绝了氧气和水分子与钢材内部元素化学反应造成的进一步腐蚀,自身具有很好的耐大气腐蚀能力。大大降低了生产成本以及后期维护成本。