高功率锂离子电池研究进展

摘要:高功率快放型锂离子电池是目前锂离子电池领域研究的重点方向之一. 为了获得具有高功率密度的锂离子电池,正极材料须具有较高的电压和较高的电子与离子导电率,正极材料主要包括高电压钴酸锂、镍锰酸锂和高电压三元材料,负极材料包括碳系材料、钛基材料和金属氧化物材料,以及为提高首效和降低负极电位而采用的预嵌锂方法,并对锂离子电池电解液用锂盐、溶剂和添加剂进行了综述. 最终总结了功率密度测试方法,并对高功率锂离子电池的研究进行展望.

电容式钛酸锂电池的设计及制备方法

摘要:为解决现有钛酸锂电池在低温下电池容量衰减和充放电过程中的电池胀气问题,从电池内外部结构和制备工艺流程两方面提出新型钛酸锂电池结构设计.在电池内部模仿电容式结构,融合电容器的物理储能方式和蓄能电池的化学储能方式,提升电池在低温环境下的充放电性能.在制备工艺上采取柱形锂离子电池含浸新技术,提高含浸效率,减少电池内部水分,部分解决电池胀气问题,并进行相关性能测试.结果表明,新型钛酸锂电池容量保持率可在9548次充放电循环下达到92.5%,低温环境下电池容量保持率大于75%,该方法有效提升了钛酸锂电池性能.

低温锂离子电容器研究进展

摘要:锂离子电容器(LIC)采用了双电层电容器(EDLC)正极和锂离子电池(LIB) 负极,因而兼具高能量密度、高功率密度和长循环寿命的优势. LIC在储能过程中正极表面发生电荷的可逆吸脱附,负极体相中存在Li+的反复嵌入/脱嵌,在低温环境下由于电解液的黏度、电导率等物化性质发生很大改变,严重影响了LIC中离子的正常运输和电荷转移,导致无法在低温工况下正常运转,限制了其全天候、宽温域的应用.因此改善LIC的低温性能成为现阶段亟待解决的问题,受到了业界的广泛关注.众多研究表明电极材料和电解液之间的相互作用直接决定LIC低温电荷存储的过程,是解决低温环境下LIC 能量密度和功率密度低的关键环节.本文从电极材料和电解液两个方面综述了国内外LIC低温性能的研究进展,概述了现阶段低温碳基材料的化学改性、表面修饰、离子嵌入以及新型电极材料的研发,并从电解液的锂盐、溶剂、添加剂三部分出发,介绍了低温工况下电解液各组成部分对LIC性能的影响,对不同改进工艺进行了分类与总结,重点讨论了新型低温添加剂在LIC中的应用,最后总结了新一代低温电解液的研究进展并对具有宽温度工况的下一代LIC提供了初步展望.

锌电池中钴基正极材料的应用现状与挑战

摘要:于丰富的矿产资源、超高的理论容量和卓越的安全性,水系锌电池成为下一代储能设备的有力竞争者。作为锌电池理想的正极材料候选者,近年来钴基电极材料因其高输出电压、高理论容量和优异的氧化还原能力(Co2+←→Co3+←→Co4+)而受到越来越多的关注。虽然研究者对应用于锌空气电池的钴基催化剂进行了文献综述,但是主要集中在单一催化方向,缺乏关于钴基电极材料多功能特性的系统总结。本文介绍了钴基正极材料在锌电池中的多功能特性,结合其氧化还原和氧催化两方面能力,从锌钴电池拓展到复合锌钴电池体系。然后,从两种电池体系中的充放电机理出发,详细介绍了当前锌钴电池中钴基材料的优化策略,以及复合锌钴电池中电极/电解液三相界面的设计方案。最后,本文介绍了当前研究的不足,并对未来研究方向进行了展望。

纳米线储能材料与器件新进展

摘要:纳米线电极材料在电化学储能领域备受关注, 是纳米与新能源技术的交叉和前沿. 纳米线拥有大的长径比、较高的比表面积、轴向连续电子传输特性与径向电子限域效应. 纳米线用作电极材料时, 由于与电解液的接触面积比较大以及反应离子的脱嵌距离短, 能大幅提升电极材料的电化学活性, 故被广泛应用于功能化储能器件. 本文介绍了纳米线原位表征技术以及纳米线在储能电极材料中的应用(离子电池、高能电池、超级电容器和微纳与柔性储能器件). 对纳米线储能材料与器件的研究与进展进行了概述, 并讨论了在电化学储能材料研究中所存在的挑战. 最后, 对纳米线储能材料与器件的发展趋势进行了展望.

基于可逆热致变色的动态体吸收太阳能光热存储相变材料

摘要:相变材料(phase change material, PCM)有望解决热能储存和热管理等方面的问题. 然而, 随着瞬态熔体前沿远离热源, 其能量密度和功率密度逐渐降低. 在太阳能直接热利用过程中, 传统充热的完成完全依赖于PCM本身的热扩散过程, 低热导限制了PCM的充热速率. 本文提出了基于可逆热致变色特性的动态相变材料(dynamicphase change material, Dyn PCM), 可以自动控制光热界面位移紧跟熔体前沿, 使相变材料在光热转换中的充热速率不受材料自身热导率限制. Dyn PCM由热致变色剂和主体PCM两部分组成, 热致变色剂以2-苯氨基-3-甲基-6-二丁氨基荧烷作为供电子体, 2,2-双(4-羟苯基)丙烷作为受电子体及4-苄氧基苯基乙基葵酸酯作为溶剂成功实现无色-黑色的变换. 主体PCM以石蜡为例, 其中含83.3 wt.%石蜡含量的Dyn PCM5潜热为154.38 kJ/kg, 仅比石蜡降低6.6%, 其透明态表现出与石蜡接近的透射率为91.2%. 对比表明, Dyn PCM5的充热速率比石蜡提升了260%.经80次循环后, Dyn PCM的基团未发生改变, 充放热性能及透射率稳定性优异, 仍具有良好的可逆的变色及充热能力. 因此, 本研究提出的热致变色复合Dyn PCM5是一种有前景的太阳能储热材料, 可进一步运用在太阳能直接吸热过程中.

可编织柔性纤维状水伏纳米发电机

摘要:可穿戴设备在医疗健康、物联网和机器人等领域具有广泛需求, 其发展具有小型化、轻量化、柔性化的趋势, 然而便携式、持续稳定的能源供给方式是限制其应用的瓶颈问题. 基于水伏效应的新型环境能源捕获技术为解决可穿戴设备的持续能源供给问题提供了新的机遇. 相关研究表明, 碳纳米材料在对水能的转换与利用中展现了独特的优势. 本文以导电炭黑为水伏材料, 通过简易的浸涂法及材料表面浸润性调控, 制备了水伏效应和原电池反应产能机制协同作用的可编织柔性纤维状水伏纳米发电机. 其在纯水及多种盐溶液中均能实现持续稳定的产电, 突破了目前水伏发电机对于水源中极低离子浓度要求的限制. 值得一提的是, 该水伏纳米发电机可以利用人体汗液直接发电, 有望作为柔性可穿戴设备稳定的能源供给方式, 解决柔性电子器件的持续能源供给问题.

锗溴混合掺杂调控钙钛矿太阳电池光电特性的第一性原理研究

摘要:采用第一性原理方法对锗溴混合掺杂下甲胺基钙钛矿(MAPbI3)材料的能带结构、态密度、介电函数和吸收光谱进行研究。构建MAPbI3、MAPb0.75Ge0.25I3、MAPbI2.5Br0.5、MAPb0.75Ge0.25I2.5Br0.5这4种钙钛矿结构模型并优化其结构,得出光电特性。研究结果表明,锗溴混合掺杂可改变价带顶与导带底位置及斜率,调控带隙值大小,同时混合掺杂也会改变价带顶与导带底的斜率,4种钙钛矿模型中锗溴混合掺杂时价带顶与导带底的斜率最小,有利于电子跃迁,提升光电转换效率;掺杂锗可提高钙钛矿在可见光区的吸收性能,掺杂溴对钙钛矿光学特性影响不大。

核电站堆内构件用奥氏体不锈钢冷拉棒材的研制

摘要:核电站堆内构件用奥氏体不锈钢对材料的纯净度、晶粒度、耐腐蚀性及力学性能要求极其严格,质量稳定的材料对核电站的安全运行至关重要。通过对316不锈钢设计合理的化学成分(质量分数/%:0.045C、0.06N、17.00Cr、2.50Mo、12.50Ni、1.80Mn);采用三元预熔渣重熔冶炼提升钢液纯净度,低熔速减少冶炼偏析;锻造+轧制联合开坯;依据材料规格控制固溶保温时间;精确控制冷拉变形量2 mm。成功研制出堆内构件用奥氏体不锈钢SA-479 316(N-60-6)冷拉棒材。其非金属夹杂物A、B、C、D类粗系、细系单项均≤1.0级,晶粒度达到5级,晶间腐蚀合格,室温拉伸屈服强度479~545 MPa,350℃高温拉伸强度515~575 MPa,满足堆内构件用冷拉棒材使用要求。