超粗晶 WC-Co硬质合金制备技术及发展趋势

摘 要:超粗晶硬质合金因其独特的组织特征,表现出良好的抗冲击性、耐磨性、抗热疲劳性等优势,在凿岩、冲压模具、热轧辊领域具有极大的发展潜力,在硬质合金领域备受关注。本文概述了超粗晶硬质合金的特点及增韧机理,介绍了目前粗颗粒 WC原料粉末和超粗晶硬质合金的制备工艺,以及超粗晶硬质合金性能强化方法的探索情况,最后对超粗晶硬质合金的发展趋势提出了几点思考。

镍基高温合金表面冲击强化机制及应用研究进展

摘要:为满足不断攀升的两机涡轮动力系统的快速发展,表面冲击强化技术在涡轮转子用高温合金表面强化的应用及相应机制的研究受到了广泛关注。然而,高温合金表面硬化层在高温服役环境下的回复、再结晶行为难以避免,由此引起的表面强韧化、抗疲劳效果的退化,成为制约表面冲击强化技术在先进高温合金关键部件深入应用的瓶颈。本文总结了近年来镍基高温合金表面冲击强化机制及应用研究进展,分析了表面冲击强化对镍基高温合金表面强韧性及抗疲劳的作用规律,探究了高温合金表面冲击硬化层在高温及长期时效过程中的显微组织、微结构演化及其对高温稳定性的作用机理。以期为发展镍基高温合金表面冲击强化、提高两机涡轮转子疲劳抗力提供基础。

钼基合金的强韧化研究现状及展望

摘要:金属钼因其诸多优异的性能在各个工业领域都有良好应用前景,但钼本身结构特征所导致的本征低温脆性、化学元素掺杂所引起的非本征脆性和制备工艺引起的组织缺陷,限制了其广泛应用和深度加工,合金化是提高钼合金性能的主要方式。本文分析了金属钼的脆性来源,指出非本征脆性及制备工艺的革新是钼合金研究和开发的重点方向; 综述了现阶段钼合金的强韧化形式,总结了高强韧钼合金的发展前景。

钨合金的强韧性研究进展

摘要:钨及其合金具有高熔点、高密度和优异的抗等离子体溅射侵蚀能力等优点,尤其是在高温服役环境下,还具有优异的综合力学性能,是航空航天、武器装备、核工程等不可或缺的关键材料。但在极端高温服役环境下钨合金面临强化相尺度大、分布不均,导致钨合金高温强韧性不足的问题。为解决上述难题,国内外学者开展了钨合金的强韧性研究,通过调控材料成分与组织结构提高钨合金的力学性能。本文主要从形变强化、固溶强化和弥散强化3个方面阐述钨合金的组织调控与强韧化机制,并对钨合金的未来发展趋势与未解决的问题进行展望。

硬质合金强韧化理论设计及应用

摘要:硬质合金因具备多种优越性能而在现代工业中不可或缺,但其硬度与韧性的矛盾制约了其性能进一步提升。多尺度材料计算方法融合多尺度理论模型与关键实验,能高效研发新材料,为硬质合金强韧化提供科学支撑。本文介绍了第一性原理计算、热力学和动力学计算、相场模拟及有限元模拟等理论手段,展示了黏结相强韧化(纳米相析出)、硬质相强韧化(调幅分解)以及组织结构优化(表面梯度结构和晶须增韧)等硬质合金强度和韧性协同提升的有效措施,并探讨了通过理论设计和关键实验验证相结合的方法来高效提升硬质合金性能。多尺度材料计算方法可为设计和制备出高强高韧硬质合金材料提供理论依据和实践指导,未来需在此基础上深入研究材料微结构演变的内在机制及其与性能的构效关系,推动硬质合金材料研发的创新和进步。

银基合金滑动电接触材料研究进展

摘要:银基电接触材料被广泛应用于电触头、导电刷、导电环、电换向片、电位器等电子电路关键零部件当中,承担电信号传递和控制、电流换向等重要用途。本文总结了AgCu 系、AgNi 系、AgCuNi系三类银基贵廉合金滑动电接触材料的发展历程,性能持续提高的技术路径,介绍了机器学习在电接触材料研发上的关键技术和现状,展望了机器学习在电接触材料研发的发展趋势。

锻造次数对纯钽组织、织构与硬度的影响

摘要: 纯钽的组织和织构会影响电子工业用钽靶的性能,为明确纯钽锻造过程中微观组织和织构的演变特征,在液压机上对电子束熔炼的纯钽进行锻造变形,随后进行1050℃退火处理,采用背散射衍射和显微硬度技术系统研究锻造次数(1~3次)对纯钽微观组织、织构、再结晶率及硬度的影响。结果表明: 1次锻造退火后的纯钽组织粗大且再结晶率较低,仅为72%;随着锻造次数的增加,纯钽的平均再结晶晶粒尺寸逐渐减小,再结晶率逐渐增加。3次锻造退火后,纯钽内部形成了强烈的{111}<uvw>织构,并且{111}晶粒占比达39.7%。维氏硬度随着锻造次数的增加而增大,3次锻造退火后的平均硬度值达到101.3 HV。

难熔金属材料增材制造工艺研究进展

摘要:难熔金属材料具有良好的高温力学性能和高温稳定性,常用于制备耐热部件,被广泛应用于航空航天、国防工业等领域。然而,难熔金属的熔点比较高, 室温塑性延展性能不佳,使用传统的加工方式制备复杂结构件时存在加工困难等问题。增材制造作为一项新兴的技术,基于三维模型数据,以激光、电子束、特殊波长光源、电弧及其多种组合作为能量源,利用“离散-堆积”成形原理制造实体部件,制备零件的尺寸可以从微米级到米级,为难熔金属复杂结构件的制备提供了新的途径。本文首先概述了增材制造技术的分类、特点及其应用,然后介绍了增材制造技术制备难熔金属的现状以及目前存在的主要问题,最后综述了增材制造工艺调控难熔金属材料微观组织和力学性能的研究进展,并对增材制造技术在难熔金属领域应用的发展方向进行了展望。

铅、镉、砷复合污染土壤修复技术研究进展与展望

摘要: 随着工业、农业、采矿业和城市化的快速发展,大量重金属等污染物进入土壤环境系统,由此引发的土壤重金属复合污染问题备受关注。全面掌握重金属复合污染现状、污染特征及修复技术手段, 对重金属污染防治和土壤的安全利用具有重要意义。综述了Pb,Cd,As复合污染土壤现状,阐述了污染来源及在土壤中的分布特征与迁移转化特征;归纳总结了物理修复法、固化/稳定化修复法和生物修复法在Pb,Cd,As复合污染治理方面的研究进展;论述了对各种土壤修复技术的优缺点和适用场景,并对未来发展方向进行了展望。相较而言, 固化/稳定化修复技术因处理效率高、成本低廉、施工简单等优点成为国内外复合污染土壤修复的主流技术。同时,中国金属矿山规模化消纳需求迫切,综合地区特色利用当地矿山固废研发新的固化/稳定化材料治理Pb,Cd,As复合污染土壤已成为目前固化/稳定化技术领域重点研究方向之一。

铱纳米颗粒制备技术及应用研究进展

摘要:铱纳米颗粒(Ir NPs)凭借熔点高、稳定性好、抗腐蚀性强、催化活性高、 选择性好以及良好的生物相容性等优点在电催化、传感、化学反应和生物医药等诸多领域得到了蓬勃发展,已经逐步成为了国防建设和新技术产业中不可或缺的关键材料之一。目前Ir NPs的制备技术主要有化学还原法、光化学还原法、电化学还原法、热分解法、水热/溶剂热法、微波辅助合成法和离子液体法。本文阐述了近年来这些制备工艺的研究现状,不仅对各工艺的优缺点进行详细讨论,同时也基于现有报道的学术见解和工业应用实践,将各工艺从合成速率、规模化(经济性)、形貌尺寸的可控性以及环保性这4个方面进行比较,优选出比较适合工业化发展的理想工艺。最后归纳Ir NPs及其复合材料的应用领域,指出拓展Ir NPs更潜在的应用价值以及开发更加新型环保的制备手段是未来发展的一个重点方向,为后续的研究提供有力的支撑。