铂族金属循环利用技术开发现状及展望

摘要:铂族金属(PGMs)是汽车、石化、能源、国防装备等领域不可或缺的战略性金属资源,但PGMs矿产资源极度匮乏,供需矛盾突出;开展PGMs循环利用是保障PGMs安全供应、支撑关联产业高质量发展的重要举措。本文分析了PGMs的供给和应用情况,明确了当前PGMs市场的供需态势;全面梳理了PGMs湿法回收(含氰化法、盐酸+氧化剂工艺),火法回收(含铅捕集、铜捕集、锍捕集、铁捕集工艺)的技术特征与应用情况;着重从焙烧‒浸出、铁捕集‒酸浸、低温铁捕集‒电解‒离心萃取工艺等方面阐述了PGMs火法‒湿法联合回收技术的研发与应用进展。其中,低温铁捕集‒电解‒离心萃取成套工艺延续了低温铁捕集研究思路,通过低熔点渣型设计将铁捕集温度由1800℃以上降至约1400℃,富集得到Fe-PGMs合金后经电解进一步富集PGMs,再经离心萃取提纯依次得到Pd、Pt、Rh,实现了短流程分离提纯PGMs,具有绿色、高效、低成本的诸多优点。着眼PGMs循环利用产业高质量发展,建议围绕“PGMs富集、分离提纯、污染防控”全流程开展基础研究和技术攻关,加快建设PGMs循环利用全链条标准体系和绿色低碳的产业生态环境,全面开展业务流程的“互联网+”能力建设以实现“回收‒处理‒再利用”全流程的智能化。

电沉积法制备钼涂层的研究进展

  摘 要:钼涂层具有高温强度高、耐腐蚀性好与抗辐照能力强等优异的理化性能,在冶金、航空航天和核工业等领域具有良好的应用前景。本文梳理了钼涂层的主要制备方法,包 括 热 喷 涂、物理气相沉积与电沉积等,比 较 了 不 同 制备方法的优缺点。着

钛双极板表面碳掺杂氮化钛耐腐蚀涂层制备

摘 要:为改善钛双极板在质子交换膜(PEM)水电解槽环境中的耐腐蚀性能和导电性能,采用电泳沉积-热处理两步法在钛基底表面制备碳掺杂氮化钛(C-TiN)复合保护涂层,并在0.5 mol/L 的 H2SO4 和5 mg/L 的 F- 溶液中模拟PEM 水电解槽阳极环境测试其电化学腐蚀性。结果表明,电泳沉积及热处理改善了氮化钛纳米颗粒的连通性,增强了涂层与衬底的粘附力,实现了电子在电活性材料中快速传递。4

高阻合金的研究进展、应用及未来趋势

摘要:高电阻合金具有高电阻率、高抗拉强度、低电阻温度系数以及良好耐磨性和抗腐蚀性等一系列性能特点,作为精密电阻合金材料具有广泛而重要的应用。本文主要以Ni-Cr基、Fe-Cr-Al基、Pd基、Au-Pd基高电阻合金为例,阐述了不同工艺处理手段对合金性能的影响,并归纳了现今高阻合金的不足之处,最后对高阻合金的应用和发展趋势进行了简要概述。

共晶高熵合金十年发展回顾(2014—2024):设计、制备与应用

摘要:共晶合金是以凝固过程发生共晶反应命名的一类多相合金,具有悠久的历史,是应用最广的铸造合金。高熵合金是多主元的新型合金,自2004 年提出以来取得了迅速发展。共晶高熵合金结合了共晶合金和高熵合金的优点,于2014 年首次公开报道。经历十年发展,共晶高熵合金已经快速经历了成分设计、组织/性能调控、大规模制备与应用几个阶段。共晶高熵合金独特的微观组织特征和优异的综合性能使其在多个领域展现出广阔的应用前景,成为近年来备受关注的新型合金材料。本文对过去十年共晶高熵合金的成分设计、制备和应用进展进行了回顾,并对未来发展趋势进行了展望。

高铁含量2∶17型钐钴永磁材料研究进展

摘要:新能源汽车和轨道交通等领域的快速发展对永磁材料的耐温能力和最大磁能积提出了更高要求。基于2∶17型钐钴(SmCo)磁体的高居里温度优势,适当增加铁对钴的替代量,是开发耐高温磁能积磁体的重要途径。然而,当铁的质量分数超过20%时,磁体中结构缺陷大幅增加,退磁曲线方形度和矫顽力急剧恶化,制约了最大磁能积的提升。基于高铁含量 2∶17型 SmCo永磁材料的研究现状及问题,本文从晶内和晶界两个方面概述了磁体中常见的结构缺陷,并总结了结构优化与磁性能提升的新进展,最后对高铁含量 SmCo永磁材料的研究趋势进行了展望。

新型ECAP工艺制备超细晶材料研究进展

摘要:等径角挤压(equal channel angular pressing,ECAP)因可制备出超细晶材料而受到界内广泛关注。其制备出块体超细晶材料具有优异的力学性能与耐腐蚀性能,目前已在航空航天、生物医疗、机械电子等领域得到率先应用,成为国内外材料学者研究的热点。然而, ECAP技术在发展和应用过程中仍然受到多重限制。对ECAP工艺进行优化与改进已成为发展趋势。初期,诸多学者通过实验研究证明:新型ECAP可达到“一次挤压,多次应变”的效果,晶粒细化更加明显,可制备出力学性能优异的材料。近年相关学者采用有限元模拟方法,探究新型ECAP技术的影响因素,从而对生产进行指导。本文评述了近年来国内外新型ECAP制备超细晶材料相关研究进展,从工艺原理出发,将新型ECAP工艺分为工艺优化与模具改进两大类,重点对7种不同新型ECAP工艺及研究现状进行归纳总结,对不同ECAP工艺后超细晶材料的显微组织、力学性能进行深入分析, 最后对新型ECAP制备超细晶材料过程中存在的问题与今后的研究方向进行总结与展望,以期为开发晶粒细化效果更佳、生产效率更高的剧烈塑性变形技术提供参考。

真空蒸馏提纯金属镱的理论及实验研究

摘要:采用Miedema模型研究了真空蒸馏提纯金属镱过程中Ca、Mg、Mn等杂质的分离特性及分离规律,并根据理论分析结果开展了不同温度下镱的真空蒸馏提纯实验。计算结果表明:在1000℃以下杂质Fe、Al、Cu、Ni与Yb的饱和蒸气压差值Δp* 极大,而杂质Mg、Ca、Mn与Yb的Δp* 很小;随着温度降低,分离系数βCa,Yb逐渐增大,而分离系数βMg,Yb和βMn,Yb保持稳定,杂质Mg、Ca、Mn的挥发速率急剧下降。实验结果表明,在700℃下真空蒸馏可有效去除金属镱中的杂质Mg、Ca、Mn。

基于机器学习的激光粉末床熔融工艺参数优化、过程监测和服役寿命预测的方法论

摘要:激光粉末床熔融工艺(LPBF)因成形精度较高、制造周期短,成为增材制造的主流方法之一,但其制造工艺的可重复性、生产过程的可解释性和成形构件的可靠性仍面临重大挑战。LPBF成形过程涉及的参数众多袁不同工艺参数的选择会导致构件内部产生不同类型的微观/宏观缺陷,进而影响构件的服役性能。因此明确工艺参数、缺陷和性能三者之间的联系是当前激光粉末床熔融制造的热点与难点。作为大数据与人工智能发展到一定阶段的必然产物,机器学习方法为有效处理高维物理量之间的复杂非线性关系提供了契机,在增材制造过程中工艺参数优化、缺陷监测和性能预测等方面得到持续关注。本文介绍了常用的机器学习(ML)模型,总结了LPBF中ML的输入信息,重点分析了数据驱动和物理驱动ML模型在LPBF各领域的应用,最后指出当前ML的局限性,并探讨了其发展趋势和技术前景。

高熵合金/陶瓷在Ti(C,N)基金属陶瓷中的研究现状与展望

摘要:Ti(C,N)基金属陶瓷因其具有良好的硬度、耐磨性和化学稳定性,成为制造业中不可或缺的关键材料,进一步提高金属陶瓷材料的强韧性对扩大其应用领域和应用规模具有十分重要的意义。本文阐述了Ti(C,N)基金属陶瓷的相结构特点,并重点综述了高熵合金/陶瓷在Ti(C,N)基金属陶瓷的黏结相和添加相成分设计和制备中的应用。对高熵合金/陶瓷在金属陶瓷的主要研究方向进行了总结展望:在Ti(C,N)基金属陶瓷中加入高熵合金黏结相后组织的演变和对材料性能的影响机理需进一步研究;同时高熵陶瓷添加相在Ti(C,N)基金属陶瓷中的作用及机理也是一个重要的研究方向。