光生物调节治疗阿尔茨海默病研究进展

摘要:阿尔茨海默病(AD)是一种以进行性记忆丧失和认知功能障碍为特征的神经退行性疾病。光生物调节(PBM)是一种针对AD治疗的有前景的创新技术路线。介绍了PBM对AD的作用机制以及相关的动物实验和临床研究,分析了PBM对AD治疗的可行性、有效性、研究重点和难点,总结了PBM应用于AD治疗的研究趋势。

阿尔茨海默病治疗药物的突破

摘要:阿尔茨海默病(Alzheimer’s disease, AD)是发病率最高的神经退行性疾病, 主要表现为记忆力下降, 认知功能缺陷, 目前尚无有效的治疗手段. 随着人口老龄化加剧, AD发病率逐年上升, 找到有效的AD药物刻不容缓. 对AD发病机理的研究中, Aβ假说是普遍接受的致病机制: 淀粉样蛋白(amyloid-β, Aβ)沉积产生神经毒性, 导致神经元死亡. 针对该致病机理设计的Aβ单抗药物的研发却很曲折, 在2023年7月, 美国食品药品监督管理局(U.S. Food and Drug Administration, FDA)批准上市抗Aβ的单克隆抗体Lecanemab, 在经过18个月的药物注射后, 与安慰剂组相比,治疗组患者大脑中Aβ沉积发生明显减少, 减缓疾病的进程. 与此同时, 另一个Aβ单抗Donanemab药物也表现出相似的治疗效果. 这不仅证明Aβ假说的正确性, 为大量的AD患者带来治疗的希望和曙光. 因此, 这两种药物被Science评为2023十大科学突破之一. 但是, 这两种药物仅对AD早期的病人有较好的治疗效果, 且药物的使用可能会带来脑出血(amyloid-related imaging abnormalities-hemorrhage, ARIA-H)、脑水肿(amyloid-related imaging abnormalitiesedema or effusions, ARIA-E)等副作用, 这些副作用在APOE ε4纯和患者出现的比例更高. 因此, 寻求更安全有效的治疗药物仍需更进一步研究.

磁场调控纳米生物催化的研究进展与生物医学应用

摘要:纳米生物催化治疗是一种利用外源纳米催化剂在病变区域引发特定化学反应来实现疾病治疗的新兴治疗方式,因其具有高效性、高选择性和外物理场的可调控性,已成为生物医学领域的热点方向。近年来,外物理场(超声、光场、电场、磁场等) 调控的纳米生物催化受到了广泛关注。其中,磁场作为一种安全可控且无组织穿透深度限制的外源性刺激方法,已应用于临床磁热疗与磁共振成像,近年来在催化治疗领域也展现出广阔的前景。本文重点综述了磁性材料在磁场作用下产生的三种物理效应(磁热、磁力、磁电),以及基于这些物理效应调控纳米生物催化的研究现状,并对未来发展方向进行了展望。

骨组织模型3D打印建模中CT图像序列选择的策略分析

摘要:骨组织模型的精确3D打印对骨科手术前进行手术方案规划、术中定位和术后评估手术效果均有不可替代的作用。然而,打印等比例的、与患者完全匹配的、精确的骨组织模型涉及术前CT影像扫描、3D建模、3D打印及打印后处理一系列流程。其中,对于3D打印前的重建,CT扫描图像序列的选择直接影响打印模型的质量。通过比较骨窗序列和标准序列 CT图像的建模及打印结果可知,后者的模型质量优于前者,表明骨组织模型并非一定要采用骨窗序列。该研究为骨组织模型的精确3D打印和建模在CT图像序列选择阶段的决策提供了科学依据。

纳米级光学超分辨成像技术研究及展望

摘要:荧光显微成像技术能够将细胞生理活动可视化,是现代生命科学研究的重要手段。超分辨成像技术的出现将研究推进到亚细胞结构层次,而具有纳米级分辨率的单分子定位成像技术成为了研究细胞器、大分子复合物空间分布及相互作用的有力工具。继 2014 年超分辨成像技术获得诺贝尔化学奖后,《自然》(Nature) 发布的 2024 年值得关注的七大技术中再次将纳米级分辨率光学成像技术作为热点进行介绍,超高分辨率成像技术是重要的前沿研究领域。本文首先简要介绍了荧光显微成像技术的发展历史、荧光显微镜的基础概念、超分辨成像技术的基本概况,之后着重介绍了单分子超分辨成像技术的研究进展,并在最后对该技术的发展及应用做了展望。

金属镁催化高张力三元环系的不对称开环反应

摘要:利用储量丰富、廉价易得、低污染元素作为催化资源构筑重要立体化学结构具有重要研究意义. 含杂原子的手性化合物, 例如手性氨基醇类、手性酰胺类、取代四唑类, 吲哚衍生物、吡咯烷衍生物等结构单元广泛存在于天然产物中, 并且在药物研发过程中具有重要的价值. 高效构建以上结构单元一直以来都是化学、生命科学、药学科研工作者重点关注的问题. 三元环系结构具有较大的环张力, 导致其稳定性低, 因此具有较高的反应活性.重要三元环系化合物主要包括: 环氧乙烷(oxirane)、氮杂环丙烷(aziridine)以及供体-受体环丙烷(donor-acceptor,D-A cyclopropane), 这些结构的不对称开环反应成为构建上述重要结构骨架的合成砌块. 值得注意的是, 近些年在金属催化剂催化策略下, 经三元环类化合物的不对称开环反应高效构建高对映选择性的含杂原子结构片段及杂环骨架受到了广泛的研究关注. 同时, 伴随了多种催化策略的发展. 本文主要综述了近年基于金属镁催化策略的三元环类化合物不对称开环反应研究进展, 讨论了基于不同类型亲核试剂及催化条件下的开环反应途径和方法, 阐述了反应的相关应用, 探讨了部分机理过程. 最后, 对三元环类化合物不对称开环反应当前的发展状况进行了总结,并在此基础上进行了相关展望.

二维过渡金属碳/氮化物在肿瘤治疗中的应用

摘要:二维过渡金属碳/氮化物(MXenes)具有优异的光热转换性能,丰富的表面基团,良好的生物相容性、亲水性和粒径可调性,这使得应用MXenes作为肿瘤诊疗过程中的治疗剂和造影剂具有巨大潜力。本文综述了基于MXenes的肿瘤单一治疗和联合治疗的相关研究,同时介绍了MXenes在肿瘤主动靶向治疗领域的研究,最后阐述了目前MXenes在制备和肿瘤治疗研究中存在的挑战和对未来的展望。

下肢外骨骼康复机器人的分类及其应用现状

摘要:下肢外骨骼康复机器人应用于下肢运动功能障碍人群,使患者能够通过机器恢复或改善行走和运动能力。但是,基于不同疾病,患者所需求的功能是不同的,比如肌力不足的患者需要增强助力,脊髓损伤患者需要运动代偿,步态异常患者需要步态矫正,脑卒中患者需要神经康复。为了设计对疾病更有针对性的下肢外骨骼康复机器人,本文根据各类下肢功能障碍的特点与康复需求,按照设备所提供的主要功能,对现有的下肢外骨骼康复机器人进行汇总和分析比较,总结现有设备的功能与疾病的相关性,为研究设计新型下肢外骨骼康复机器人提供一定参考。

挤出成形3D打印仿生骨植入钛合金支架制备工艺及性能研究

摘要:采用万能试验机和扫描电子显微镜研究了挤出成形3D打印Ti6Al4V钛合金支架的制备工艺、力学性能及微观结构,介绍了采用聚乙烯醇(PVA)水凝胶制备钛合金支架的方法,研究了浆料PVA含量、脱脂温度和烧结温度对制备工艺的影响规律,分析了钛合金支架孔隙率与力学性能的关系。结果表明:采用PVA 水凝胶制备钛合金支架可以获得分布均匀且高度互联的多孔结构,当浆料PVA 质量分数为15%,脱脂温度和烧结温度分别设定为360℃和1300℃时,制备工艺最佳。孔隙率为59.8% 的钛合金支架表现出与人体骨骼相匹配的力学性能,可避免应力遮蔽效应。

基于有机场效应晶体管的可穿戴柔性监测设备在生物医学领域的研究现状

摘要:介绍了基于有机场效应晶体管(organic field effect transistor,OFET)技术的柔性半导体器件的工作原理和发展概况,综述了基于OFET 的生物力学监测设备、文身生物监测设备、细胞检测设备等可穿戴柔性监测设备的研究现状,分析了基于OFET 的可穿戴柔性监测设备存在的不足,指出了微型化、个性化、多元化等是未来基于OFET 的可穿戴柔性监测设备的发展方向。