智能蛋白质工程

摘要:蛋白质是生命活动的重要基础物质,在生物体内扮演着多种关键角色,包括构建细胞结构、参与代谢和能量转化、调节生理功能、提供免疫保护、传递信号等。蛋白质多样化的功能是通过其特定的氨基酸序列,以及相应的三维结构来实现的。蛋白质工程通过改变或设计蛋白质的序列与结构来实现特定的功能,从而扩展对蛋白质的理解,并为生物医学、生物材料、生物工程及其他领域的研究提供强大的工具和技术支持。近年来,随着算法的进步、大数据的积累,以及硬件计算能力的提升,人工智能技术得到了快速发展,并逐渐应用于蛋白质工程领域,形成了智能蛋白质工程。通过运用基因组、蛋白质组、蛋白质结构数据库等生物学大数据,以及在数据基础上建立各类先进的深度学习模型,智能蛋白质工程能够实现高效、精准、可预测的蛋白质设计和改造。本文主要侧重于智能蛋白质工程的四个方面,即结构设计、无骨架的序列设计、基于骨架的序列设计,以及其他辅助设计方法,总结了人工智能技术在这些领域取得的最新进展,并汇总了近年来采用智能蛋白质工程技术取得的实践成果。智能蛋白质工程作为一种新兴的技术和方法,展示了巨大的潜力和前景,为未来科学研究和技术创新带来深远的影响,并为解决全球性挑战提供新的解决方案和工具。

生物质基抗菌材料制备及其应用进展

摘要:应对病原微生物(如细菌)感染是人类生命健康所面临的挑战之一. 生物质基抗菌材料具有可再生、可降解、可改性及生物相容性好等优点, 是近年来的研究热点之一. 本文系统综述了近年来纤维素、木质素及壳聚糖等代表性生物质基抗菌材料的制备及其应用进展, 涵盖生物质抗菌原理分析、材料制备方法及其抗菌性能优化策略(如季铵化、氨基硅烷化、羧甲基化、硫醇化等结构改性, 以及纳米金属或金属氧化物颗粒组成复配等). 重点介绍了生物质基材料与抗菌分子的接枝原理、金属或非金属复合材料性质及实际应用情况(如医疗、食品保鲜、日用化妆品、纺织及污水处理等). 最后, 总结了生物质基抗菌材料的研发现状和挑战, 并对其未来的发展趋势进行了展望.

纳米硒的功能设计及其在肿瘤精准治疗中的应用进展

摘要:纳米硒作为一种新型单质硒,与有机硒和无机硒相比具有更高的生物利用度,更强的生物活性和更低的毒性,并且具有抗氧化和抗肿瘤的作用。概述了纳米硒在生物医药中的应用,包括纳米硒用于化疗、放疗、放化疗以及其他临床药物的增敏,纳米硒的功能化和靶向修饰增强抗肿瘤效果,含硒纳米材料在抗肿瘤中的应用,纳米硒的毒理学,介绍了纳米硒制剂产业化发展情况。

生物可降解聚酯/生物陶瓷3D打印骨组织工程支架研究进展

摘要 :移植骨植入物是目前治疗骨缺损的公认有效手段之一。生物可降解聚酯/生物陶瓷复合材料结合了生物可降解聚酯的良好力学性能、可降解性能和生物陶瓷的成骨活性,为骨植入物材料提供了新的选择。骨组织工程通过模拟骨骼微环境,加速骨缺损修复。将生物可降解聚酯/生物陶瓷复合材料制备成骨组织工程支架,能进一步加快骨修复进程。3D 打印技术的引入能使生物可降解聚酯/生物陶瓷骨组织工程支架的制备过程精确、可重复且具备高自由度,展现出了良好的发展前景。本文阐述了骨组织工程支架应具备的各项性能,总结了近年来国内外学者对生物可降解聚酯/生物陶瓷骨组织工程支架上述性能的改善策略,并展望未来该研究领域的发展方向。

金属镁催化高张力三元环系的不对称开环反应

摘要:利用储量丰富、廉价易得、低污染元素作为催化资源构筑重要立体化学结构具有重要研究意义. 含杂原子的手性化合物, 例如手性氨基醇类、手性酰胺类、取代四唑类, 吲哚衍生物、吡咯烷衍生物等结构单元广泛存在于天然产物中, 并且在药物研发过程中具有重要的价值. 高效构建以上结构单元一直以来都是化学、生命科学、药学科研工作者重点关注的问题. 三元环系结构具有较大的环张力, 导致其稳定性低, 因此具有较高的反应活性.重要三元环系化合物主要包括: 环氧乙烷(oxirane)、氮杂环丙烷(aziridine)以及供体-受体环丙烷(donor-acceptor,D-A cyclopropane), 这些结构的不对称开环反应成为构建上述重要结构骨架的合成砌块. 值得注意的是, 近些年在金属催化剂催化策略下, 经三元环类化合物的不对称开环反应高效构建高对映选择性的含杂原子结构片段及杂环骨架受到了广泛的研究关注. 同时, 伴随了多种催化策略的发展. 本文主要综述了近年基于金属镁催化策略的三元环类化合物不对称开环反应研究进展, 讨论了基于不同类型亲核试剂及催化条件下的开环反应途径和方法, 阐述了反应的相关应用, 探讨了部分机理过程. 最后, 对三元环类化合物不对称开环反应当前的发展状况进行了总结,并在此基础上进行了相关展望.

面向穿戴或植入式临床应用的ssDNAGFET纳米生物传感器发展现状

摘要:单链DNA探针-石墨烯场效应管(ssDNA-GFET)纳米生物传感器在可穿戴或可植入式临床应用领域有着广泛前景。介绍了现有ssDNA-GFET的应用、标志物检测性能提升方法、真实人体样本溶液中标志物检测,以及面向可穿戴或可植入式临床应用的柔性化研发现状,总结了ssDNA-GFET在投入实际可穿戴或可植入式临床应用前有待解决的问题。

生物医用增材制造多孔钽的研究进展

摘要:随着钽金属制备技术的发展,多孔钽植入物在骨科等生物医疗领域得到了更广泛的应用。多孔钽是一种内部孔隙连通的生物医用材料,可为细胞和组织的向内生长、血管化和新骨形成提供绝佳的基体。采用增材制造技术可精确定制多孔钽的宏观外形和内部孔隙特征,满足精准医疗的发展需求。本文综述了生物医用增材制造多孔钽在原材料、制备技术、力学行为与体内外评价和临床应用等方面的相关进展,并基于当前的技术趋势提出了增材制造多孔钽的未来发展方向。

植入式生物可降解电化学储能器件的研究进展

摘要:新型生物可降解的植入式医疗电子器件在个性化健康监测和疾病的精准诊疗方面展现出巨大的应用潜力. 然而, 真正实现临床应用还面临着诸多挑战, 尤其是缺乏与之相匹配的生物可降解能源器件. 现有的植入式电池体积庞大、封装坚硬, 与柔软的生物组织机械失配. 此外, 电池所使用材料包含有毒有害物质, 植入体内后存在严重的安全隐患, 更重要的是服役结束后需要通过二次手术移除, 这给患者带来了极大的身体和经济负担. 具有瞬态特性和良好生物相容性的柔性供能器件为解决以上问题提供了新的途径. 其中, 生物可降解电化学储能器件具有独立的供电能力, 基本不受外部条件约束, 这与植入式医疗电子的特殊应用场景完美契合. 基于此, 本文重点综述了面向植入式医疗电子应用的生物可降解电池及超级电容器的最新研究进展, 根据器件构型对其进行了分类讨论, 内容包括工作原理、材料选择、电化学性能、降解行为等. 最后探讨了各自所面临的一些问题和挑战,并对未来的发展方向进行了展望.

磁场调控纳米生物催化的研究进展与生物医学应用

摘要:纳米生物催化治疗是一种利用外源纳米催化剂在病变区域引发特定化学反应来实现疾病治疗的新兴治疗方式,因其具有高效性、高选择性和外物理场的可调控性,已成为生物医学领域的热点方向。近年来,外物理场(超声、光场、电场、磁场等) 调控的纳米生物催化受到了广泛关注。其中,磁场作为一种安全可控且无组织穿透深度限制的外源性刺激方法,已应用于临床磁热疗与磁共振成像,近年来在催化治疗领域也展现出广阔的前景。本文重点综述了磁性材料在磁场作用下产生的三种物理效应(磁热、磁力、磁电),以及基于这些物理效应调控纳米生物催化的研究现状,并对未来发展方向进行了展望。

可穿戴光学汗液传感器的研究进展

摘要:生物传感器的不断进步促进了可穿戴健康监测技术的快速发展. 汗液中富含与人体健康相关的多种生物标志物. 基于汗液检测的可穿戴传感技术对于人体健康监测具有重要的应用价值. 除了传统的电化学检测, 光学检测作为一种快速、简便的测量方法, 在可穿戴汗液传感领域也发挥着至关重要的作用. 基于此, 我们从柔性界面材料、汗液采集方式和光学检测原理及方法三个方面综述了近5年来国内外可穿戴光学汗液传感技术的研究进展. 最后, 总结了目前可穿戴光学汗液传感器面临的问题, 并对其发展及应用前景进行展望.