氢氟醚的合成及应用研究进展

摘要:氢氟醚被认为是一种新型理想的ODS替代品,除优良的环境性能外,氢氟醚还具有毒性低、无腐蚀性、不燃和不产生烟尘等特点,因其具有其他替代品无可比拟的优势被广泛应用于各个行业。综述了氢氟醚的优良性能、应用场景和国内外制备状况。

不对称电化学有机合成

摘要:有机电化学合成可以追溯到19 世纪, 其发展历史悠久. 而将不对称催化和有机电化学合成结合开辟新的合成方法, 已逐渐成为合成手性化合物的重要途经之一. 因此, 不对称电化学合成吸引了众多有机合成研究者的关注, 在近几十年间, 不对称电化学合成发展迅速且成效卓越, 已成为新兴领域. 不对称电合成可以突破传统合成的限制, 通过调节电流、电压以改变反应的选择性, 甚至开发出传统合成方法无法实现的策略, 并且具备温和高效、绿色环保等优势. 目前, 不对称电化学已与有机小分子催化、金属催化、光催化、酶催化等领域相结合, 在合成具有药物活性分子等方面有着巨大潜力, 但不对称电化学的发展仍有许多局限性, 探索新的电化学不对称催化体系仍然有巨大的挑战性,还有很多未知需要探索. 基于此, 本文总结了近二十年不对称电化学的进展, 依据催化剂类型不同, 分为金属电化学还原不对称催化、金属电化学氧化不对称催化、有机电化学还原不对称催化及有机电化学氧化不对称催化四个方面介绍不对称电化学的研究成果.

植物油基聚氨酯的研究新进展

摘要:介绍了传统热固性植物油基聚氨酯的改性方法,包括物理改性(填充改性和共混改性)和化学改性(接枝共聚改性、交联改性、互穿聚合物网络改性)。用于物理改性的材料主要有SiO2等无机物和纤维素等有机物,利用苯乙烯、丙烯酸酯等单体与聚氨酯接枝共聚是化学改性的主要方法。评述了热塑性聚氨酯的特点、制备方法及应用领域,重点介绍了油酸基热塑性聚氨酯的制备、性能及应用。对植物油基聚氨酯的发展前景作了展望:采用表面引发活性聚合等方式对传统的热固性聚氨酯进行可控化学改性;运用点击化学方法对热塑性聚氨酯进行改性,促使其多功能化。

有机半导体光催化析氢反应研究进展 

摘要:使用半导体材料进行太阳能制氢是使用化石燃料制氢的替代方案。有机光催化剂由地球上大量存在的C、H 和O 等元素组成,因其通过分子工程可以调节电子性质,相比于无机催化剂更具有优势。然而,目前对其光催化氧化还原过程的关键性质的理解尚不完全,阻碍了向成本更低更具有竞争技术的进一步发展。综述了有机半导体光催化进展及机理的研究。从描述有机半导体的原理开始,概述了有机光催化剂析氢反应的研究现状,分析了光激发后的激子行为,并提出了提高有机半导体光催化制氢效率的策略,最后总结了共轭超分子和聚合物有机光催化剂的研究进展,并对光催化剂的发展提出了期待和展望。

纳米铝溶胶杂化有机硅耐火阻燃涂层的制备及性能

摘 要:本研究以纳米铝溶胶为无机组分(ALS),甲基三乙氧基硅烷(MTES)和苯基三乙氧基硅烷(PhTES)为有机前驱体,通过溶胶-凝胶法制备了纳米铝溶胶杂化甲基三乙氧基硅烷(ALS/MTES)、纳米铝溶胶杂化苯基三乙氧基硅烷(ALS/PhTES)和纳米铝溶胶杂化甲基三乙氧基硅烷及苯基三乙氧基硅烷(ALS/MTES/PhTES)3 种有机/无机杂化耐火阻燃涂层。对涂层的柔韧性测试表明,含苯基硅烷的ALS/PhTES 和ALS/MTES/PhTES 涂层的柔韧性优于ALS/MTES 涂层,说明PhTES 的引入可提升涂层柔韧性。对涂层热稳定性测试表明,ALS/MTES/PhTES 涂层的Tg 最高,为205.78 ℃,900 ℃时剩余质量占比为72.57%,说明PhTES 的加入可提高涂层热稳定性。SEM 像显示,涂层表面均匀致密且无明显相界面。另外,涂层烧蚀前后的XRD 测试表明,涂层耐火阻燃机理归因于涂层烧蚀时有机硅侧链基团分解生成CO2 和H2O,以及铝溶胶分解生成γ-Al2O3 和H2O,从而阻止涂层的燃烧。

金属有机骨架复合聚合物电解质的研究进展

摘要:由于安全和能量密度上的优势,全固态锂金属电池已经成为下一代电池发展的希望。在众多种类的固态电解质中,聚合物电解质具有较高的柔韧性、优良的加工性和与电极良好的界面接触性。但目前,聚合物固态电解质存在离子电导率较低机械强度较差的问题。为了提高聚合物电解质(SPE)的性能,向SPE中加入无机填料被认为是一种有效的方法。金属有机框架(MOF)材料具有极高的比表面积、可设计的多孔结构和易于化学调节等优点。将MOF材料引入聚合物基体中,可以提高聚合物固态电解质的离子电导率和机械性能,有利于形成良好的电极/电解质接触界面。本文综述了金属有机框架(MOF)复合聚合物固态电解质的最新研究进展。

金属有机框架纳米酶在食品分析中的研究进展

摘要:纳米酶是一种具有天然模拟酶活性的纳米材料,兼具纳米材料性能与类似天然酶的良好催化性能。在众多纳米酶中,金属有机框架纳米酶作为一种新型生物传感材料,在食品分析领域备受关注。金属有机框架材料(MOF) 是一类多孔晶体材料,具有结构均匀、孔隙率高、组成可调、表面易于功能化等优点。基于MOF 的传感器具有高吸收性、强发光特性和良好的成本效益,是传统检测方法的补充和替代分析方法,前景广阔。该文综述了MOFs 酶的特性、常用MOFs 酶的种类,并探讨其在食品中检测农药、添加剂、重金属、有害微生物和功能性成分方面的应用。最后就目前存在的问题提出建议,并对未来的发展前景进行了展望。

有机分子晶体结构预测方法及应用进展: 传统技术与机器学习的结合

摘要:晶体结构预测(crystal structure prediction, CSP)技术能够仅依赖分子式预测材料的晶体结构, 其在识别稳定结构和探索多晶型方面展现出独特的优势, 已成为材料科学、药物学等领域不可或缺的工具. 自20世纪末以来, CSP方法经历了从初期侧重技术实现的探索, 到逐步实现高通量精确计算的阶段, 并发展为一种能够全面探索高维势能面、精确排序分子晶体能量的综合性算法. 本文综述了有机分子CSP的主要方法及策略, 同时介绍了机器学习等新技术在CSP领域的引入和应用情况, 并讨论了这些技术展现出的巨大潜力. 本文旨在为读者提供全面、系统的CSP技术进展回顾, 探讨当前的应用现状与挑战, 并展望机器学习为该领域带来的新机遇, 促进CSP技术在多领域的深入应用和跨学科融合.

基于有机电化学晶体管的感存算一体化神经界面器件展望

摘要:生物神经系统具有复杂且独特的结构, 能够以极为高效的方式进行信息处理. 随着人工智能的快速发展, 传统的冯•诺依曼架构正面临前所未有的挑战. 脑机接口、智能假肢和神经机器人等领域的核心在于构建神经界面器件, 即在神经系统与外部设备之间构建直接进行信息传递的接口. 然而, 传感器、存储器和计算单元在物理上的分离限制了处理效率和功耗控制. 面对突破冯•诺依曼瓶颈和发展新型神经界面的需求, 感存算一体化正成为下一代智能系统和神经界面的核心. 尽管尚未实现包含所有这些功能的集成系统并应用于生物体中, 但有机电化学晶体管凭借其优异的特性, 为先进的神经系统模拟和生物接口技术的发展开辟了新的途径. 发展基于有机电化学晶体管的神经界面器件显示出广阔的前景, 对推进智能生物电子学的进步具有重要意义.

导电金属有机框架材料的研究进展

摘要:金属有机框架材料是一类具有高比表面积的无机-有机杂化晶态材料,传统的金属有机框架材料由于其导电性较差,在电子器件领域的应用受到限制。近期研究表明,通过引入含有特定共轭结构的配体以增强其导电性等设计策略,能够成功制备出具有较高导电性的金属有机框架材料,从而拓展了其应用范围。本文系统总结了导电金属有机框架材料的设计策略、表征方法、研究进展以及其最新应用,并详细探讨了该研究领域中存在的挑战及其未来的发展方向。