高导热石墨烯复合材料研究进展

摘要: 电子器件、智能穿戴设备,以及处于高速发展期的新能源汽车都在朝着轻量化、高功率的方向发展,而散热问题已成为制约微电子和新能源行业发展的瓶颈性难题。石墨烯复合材料在热管理材料领域得到了广泛的关注与研究。综述了当前石墨烯导热复合材料的导热模型、三维石墨烯导热网络的构筑方法、石墨烯表面改性和石墨烯导热复合材料的制备方法。

增材制造钛基复合材料体系与组织结构设计

摘要:增材制造技术作为一种样件快速成型制备技术,为基于成分调控与结构设计的高性能钛基复合材料的开发带来了机遇。本文介绍了增材制造钛基复合材料研究与应用的最新进展,分析了能量密度、打印路径及冷速控制等对材料显微组织与力学性能的影响。在此基础上,介绍了以陶瓷、金属间化合物及稀土元素为主的增材制造钛基复合材料成分调控策略。其中,以TiB、TiC 为代表的陶瓷增强相及Ti-Cu 体系的金属间化合物为目前钛基复合材料中广泛使用的增强体;以La、Ce 和Nd 为主的稀土元素则可有效解决氧偏聚问题并显著细化晶粒。进而以网状结构和层状结构为例介绍了增材制造钛基复合材料结构设计研究进展。其中,网状结构多通过Ti 与B 和C 元素的原位反应生成增强相,并通过控制凝固过程实现对增强相非均匀分布的调控;层状结构则多通过交替打印多种粉体获得。网状、层状结构设计对钛基复合材料强韧化有着积极的作用。本文最后通过对研究现状和未来研究趋势的简要分析与展望,为增材制造高性能钛基复合材料的设计与制备提供一定参考。

可加工氮化硼系复相陶瓷的研究发展现状和发展趋势以及应用现状分析

摘要:先进陶瓷材料具有较高的力学性能.以及较高的抗高温氧化性能等。但是先进陶瓷材料由于硬度较高、可加工性能较差,导致陶瓷材料的机械加工成本较高,所以限制了陶瓷材料的广泛应用。为了改善和提高陶瓷材料的可加工性能,向陶瓷基体中加入六方氮化硼形成可加工氮化硼系复相陶瓷。可加工氮化棚系复相陶资具有较高的力学性能和优良的可加工性能,氮化棚系复相陶瓷可以进行机械加工。目前研究和开发的可加工氣化棚系复相陶瓷主要包括:Al2O3/BN复相陶瓷,ZrO2/BN复相陶瓷,SiC/BN复相陶瓷,Si3N4/BN复相陶瓷,A1N/BN复相陶瓷等。目前可加工氮化硼系复相陶瓷的研究主要集中在氮化硼系复相陶瓷的制备工艺,力学性能,可加工性能,抗热震性能,抗高温氧化性能等。本文主要叙述可加工氮化硼系复相陶瓷的制备工艺,力学性能和可加工性能,抗热震性能,抗高温氧化性能等。并叙述可加工氮化硼系复相陶瓷的研究发展现状和发展趋势,并对可加工氮化硼系复相陶瓷的未来发展趋势进行分析和预测。

超短脉冲激光加工碳纤维复合材料研究进展

摘要:超短脉冲激光加工作为一种非接触式的特种加工方法,利用高功率密度的聚焦激光束烧蚀碳纤维增强复合材料(CFRP)表面,实现高精密加工,有望解决传统机械加工工艺造成的刀具损坏、残余应力和表面质量差等问题。因此,本文综述了近些年超短脉冲激光加工CFRP的研究进展。首先梳理了超短脉冲激光加工CFRP的加工机理,其中包括了材料去除机理、相互作用过程机理和对激光的吸收与反射机理。其次,着重阐述了热影响区和锥度这两类缺陷,分析了缺陷的形成原因,并提出了相应抑制方法。本文对超短脉冲激光加工CFRP的理论研究具备一定借鉴意义。

碳纤维复合材料激光切割技术研究进展

摘要:碳纤维复合材料具有重量轻、抗断裂、耐腐蚀、耐磨性好等优越特性,被广泛应用于汽车制造、航空航天和军用制品等领域,但同时该材料的硬度高且各向异性及层间强度低,采用传统机械加工时易产生毛刺、分层等损伤,对此综述了激光切割碳纤维复合材料的特点、表面质量及影响因素,总结了该技术在工艺优化、理论仿真方面的研究进展,同时指出了相关研究中存在的问题,并对该技术发展趋势进行了展望。

纺织复合材料多尺度网格划分方法

摘要:针对现有纺织复合材料网格划分时,由不规则纱线截面形状和材料边界引起的失真、干涉和锐化等问题,提出了一种基于织物微观几何结构的复合材料网格划分方法和单元拆分机制。该方法借助专业纺织建模软件DFMA 建立织物单胞几何结构点云。首先,基于结构点云,计算纱线路径并采用Delaunay 三角网改进的Alpha-shape 算法计算纱线截面轮廓,依此获得纱线表面初始网格。然后,将该网格置于体素网格中,通过网格映射方法引入周期性边界,并与体素网格节点相匹配,进而消除纱线间的渗透和窄间隙。最后,拆分体素单元,以保证材料的连续性。采用该方法建立了平纹、三维整体正交和层间正交复合材料网格模型,并基于应变连续损伤准则与指数衰减模型建立了纺织复合材料的损伤起始与演化准则,模拟了平纹编织复合材料在剪切载荷作用下的力学性能。结果表明,与四面体和六面体网格划分方法相比,所提网格划分方法能够较为准确地还原复合材料内部几何结构,处理二维和三维机织物结构中的尖锐边界和复杂曲面,获得光滑的纱线表面和清晰的轮廓;网格数量适中,计算耗时仅为TexGen 模型的15%。剪切模量和强度的仿真结果与实验结果对比分别相差8. 93% 和3. 73%,验证了模型的有效性与可靠性。

导热复合材料降低填料之间界面热阻研究进展

摘要:复合材料热导率增强的低效率源于其内部存在界面热阻——填料与树脂基体之间的界面热阻及填料之间的界面热阻。目前大多数研究都集中于降低填料与树脂基体之间的界面热阻,而高填充量下填料之间的界面热阻才是影响复合材料热导率的关键因素。文中从增加填料之间的接触面积和提高填料之间的键接强度两方面综述了近年来降低填料之间界面热阻的研究进展,为高导热复合材料的设计和制备提供参考。

超构材料波动功能调控研究进展

摘 要 :超构材料是人工构造的复合结构材料,通过设计基元的结构参数,可以实现丰富的波动调控功能,并可突破传统材料的波动响应极限,在航空航天、轨道交通等民用和国防各领域都具有极大的应用潜力。首先简要介绍了超构材料的基本概念、性质和发展历史,然后从超构材料的禁带减振及其智能设计、低频宽带降噪和能量采集三个方面详细介绍超构材料的基本功能,再从实际应用的多需求出发介绍了轻质-承载-减振降噪和能量采集-减振降噪等类型的多功能一体化超构材料设计原理和性能。最后,总结上述研究进展,并展望超构材料与复合材料、人工智能和非厄米时变系统等的交叉研究,进一步提升超构材料性能和应用能力。

连续SiC纤维增强钛基复合材料应用及研究进展

摘要:连续SiC纤维增强钛基(SiCf/Ti)复合材料具有比强度高、比模量高、耐高温等特点,在航空航天领域具有重要的应用前景。本文总结了SiCf/Ti复合材料的应用、制备、性能调控和检测技术,并提出了SiCf/Ti复合材料未来需要突破的瓶颈问题。SiCf/Ti复合材料单向性能优异,在环类转动件(叶环、涡轮盘等)、杆件(涡轮轴、连杆、紧固件等)以及板类构件(飞机蒙皮等)具有明显应用优势。常用的SiCf/Ti复合材料的制备方法有箔压法和基体涂层法,箔压法适合制备板类结构件,基体涂层法适用于缠绕形式的结构件,如环、盘以及杆等。SiCf/Ti复合材料的性能主要取决于SiC纤维、钛合金基体以及纤维/基体界面。SiC纤维微观结构和性能对制备工艺具有较强的敏感性,通过反应器结构和沉积条件调控获得性能稳定的SiC纤维是研究重点之一。钛合金基体可通过物理气相沉积的方法涂敷到纤维表面,制备出钛合金先驱丝,这是后续制备出高质量构件的关键。界面微观结构、热稳定性、力学性能与纤维表面的涂层密切相关,因此涂层种类和结构调控是SiCf/Ti复合材料的界面性能调控的重要手段。SiCf/Ti复合材料的应用促进了无损检测技术的发展,由此研究者开展了超声检测、X射线检测和声发射等在复合材料检测上的基础研究。为了实现SiCf/Ti复合材料的广泛应用,未来还需要在复合材料结构设计、低成本制造、失效分析与寿命预测等方面开展进一步的研究工作。

轻量化复合材料与3D打印技术在服务机器人上的应用与展望

摘要:作为人类劳动力的替代品,服务机器人的应用方兴未艾。本文介绍了服务机器人的应用特点和应用场景,加强机器人的运动性和自主性方面仍是重要的研究方向,而发展机器人的轻量化可以增加机器人的灵活性和工作效率,并提高操作的速度和精度。通过轻量化材料的选择和结构优化设计可以实现机器人的轻量化。本文详细介绍了轻量化复合材料的概念和3D打印技术的概念,将这两种应用结合起来,特别是碳纤维复合材料的3D打印应用于服务机器人上,可以实现服务机器人的轻量化,降低机电系统的能耗,缩短开发周期。