机器学习在材料科学中的应用

摘要:概述了4种机器学习方法,包括监督学习、无监督学习、深度学习、强化学习。讨论了机器学习在材料设计与发现、材料表征和计算材料学中的具体应用,展示了其在加速材料开发和优化方面的潜力。介绍了材料科学中的数据库和数据挖掘技术,总结了数据库的发展和数据挖掘的应用。汇总了新兴大模型技术在材料科学中的应用,提出大模型技术的发展引领材料科学进入了智能化新时代。然而当前领域仍面临诸多挑战,如数据质量、模型解释性和隐私安全问题等。通过深入研究和国际合作,未来的材料科学有望通过机器学习技术实现更加智能化和高效的材料设计与发现。

机器学习在高效连铸制造中的应用现状及展望

摘要:高效连铸以高拉速、铸坯无缺陷为基础,通过钢-轧界面间铸坯热装和轧制实现钢铁制造流程的绿色低碳发展。传统连铸制造需向智能化连铸转型,以连铸制造流程大数据量和机器学习算法为基础,挖掘有价值的信息或逻辑关系。构建具有决策能力和预测判断功能的智能化铸机,实现连铸高效生产和智能控制。通过介绍国内外机器学习在高效连铸制造中的应用现状,分析智能连铸在铸坯裂纹在线智能预报、结晶器漏钢智能预报和连铸过程的其他重要智能化的研究进展,提出机器学习在高效连铸制造中的研究展望。通过深度学习在连铸全流程中的应用、探索不均衡样本的智能连铸算法和结合工业机理模型与机器学习模型实现多目标任务的智能化连铸模型,实现连铸流程智能化和透明化控制,为国内相关钢铁企业提供智能化连铸的研发思路和参考。

材料研发大数据系统在钢铁材料研发中的应用

摘要:在材料智能研发的大背景之下,结合材料研发的痛点、卡点与难点建设了一套材料研发大数据系统平台。该平台整合了诸如高通量集成计算平台、智能实验室管理系统、生产大数据系统等多个子系统,借助这一平台,科研人员可通过数字化手段,充分借鉴以往研发失败的经验教训,迅速锁定产品及工艺开发的关键所在,进而快速提升研发效率。同时,该平台能够对研发数据进行集中管理与应用,推动材料研发向数据驱动研发的全新模式转变。通过开展研发大数据平台的相关建设工作,冶金材料研发的数据管理水平与应用水平将会得到大幅提升,引导钢铁材料研发从传统的试错法逐步转向大数据分析方法,极大缩短研发周期,降低研发成本。

高品质模铸技术数字化发展思考

摘要:模铸技术作为制造业生产中的关键环节,其产品质量和生产效率对制造业发展起着至关重要的作用。目前,传统模铸技术存在精度控制难度大、生产过程不稳定和资源浪费严重等问题。传感器技术、数据分析、人工智能等数字化技术的出现,为解决上述难题带来了新的契机。基于此,阐述了智能化设备与控制系统的集成、大数据与人工智能的应用以及互联网等技术在冶金行业的应用趋势。介绍了数值模拟技术在模铸和轧制领域的应用,并详细探讨了模铸知识数据平台、离线复现系统、在线控制系统和模铸工业大数据平台在模铸生产中的可应用性,展现了模铸数字化虚拟现实平台的构建意义和作用。模铸技术的数字化转型对于提高生产效率、产品质量,降低成本和风险,推动行业可持续发展具有重要意义。

高频磁场在材料加工中的应用与最新进展

摘要:材料电磁加工向高频技术方向发展,高频磁场在材料加工过程中发挥着重要作用。传统高频磁场技术相较于工频电磁加工技术可以对导电材料产生更显著的热效应和电磁力,通过无接触的工作方式,广泛应用于感应淬火、感应焊接、感应热弯成型、感应熔覆以及电磁悬浮熔炼等金属材料的制造和加工中,具有高效率、高可控性、低能耗的优势。近年来发展出的高频磁场作用于低电导率液体中的新应用,突破了传统电磁技术在处理低导电材料时的限制。由独特排布的双相电感线圈产生的高频行波磁场可以对电导率为1~100S/m低导电液体产生厘米每秒量级的驱动效果,可以强化工业中液态钢渣等低导电液体的三传过程,有望应用于热态钢渣提铁技术,提高钢渣铁资源的回收率。结合传统高频技术和高频行波磁场技术的特点和应用,高频磁场技术在材料加工领域的未来发展需通过线圈结构设计以及频率控制实现复杂的加工过程,并将可应用的材料拓展到低导电介质领域。

钢中过渡金属氮化物结构和物性的第一性原理计算

摘要: 钢中过渡金属氮化物(TiN、NbN、TaN、VN)的性质对于深入理解材料的微观结构和性能具有重要意义。采用第一性原理计算方法,深入分析了钢中过渡金属氮化物的晶体结构、力学性能和电子特性,揭示了这些氮化物的稳定性。研究发现,TiN 具有最大的形成焓绝对值,显示出最高的结构稳定性。能带结构分析表明,TiN、NbN、TaN 和VN 均为导体材料,呈现金属导电性质。弹性性能计算揭示了VN 的体积模量为315GPa,显示出较大的不可压缩性。此外,TiN 和VN 的剪切模量为184GPa,表明他们在抵抗剪切形变能力方面优于NbN和TaN。弹性各向异性计算说明TiN 比NbN 的微观结构更均匀,而VN 具有比TaN 更均匀的微观结构。电荷密度分析确认了Ti-N、Nb-N、Ta-N 和V-N 键的共价特性。布局数计算进一步揭示了TiN、NbN、TaN 和VN 中存在离子键和共价键的相互作用。这些结果有助于实现钢中过渡金属氮化物的合理控制,对提升含氮不锈钢性能具有重要意义。

激光喷丸处理对铁基熔覆层的组织演变和磨损性能的影响

摘要:为改善传统激光熔覆制备过程中产生的气孔、微裂纹、残余应力等质量问题,提高熔覆层的力学性能,采用激光喷丸(Laserpeening,LP)后处理铁基熔覆层,对比分析激光喷丸处理前后熔覆层的微观组织演变规律和磨损性能机理。结果发现,经LP处理后,熔覆层中没有发生相变,(110)晶面衍射峰产生了宽化效应,细化了表层的晶粒,改变了表面复杂的残余应力场,获得了均匀分布的残余压应力,显微硬度为激光喷丸处理前的1.3倍,摩擦系数相较于激光喷丸处理前降低了25%,有效的增强了熔覆层的磨损性能。

冷轧镀锌卷表面细微缺陷检测方法

摘要:[目的]一般冷轧镀锌卷表面细微缺陷检测模型难以兼顾高精度和低复杂度。[方法]提出了一种基于钢缺陷数据集(SDD)和 YOLO(即 you only look once)算法的细微缺陷检测模型。该模型通过 3 个关键创新来解决上述问题:在特征提取阶段仅对未被遮挡的有效像素进行运算,在特征表达阶段采用高频低尺度直连技术和 Harr小波变换,在缺陷回归预测阶段使用可变形卷积学习共享卷积核偏置参数。[结果]在自建的 SDD上,该模型达到 94.9%的检测精度和 103 FPS(帧率)的推理速度,模型大小仅13.8 M。[结论]本文为镀锌卷表面细微缺陷检测提供了高效的轻量级解决方案。

先进钢铁冶炼用轻量化耐火材料的研究进展

摘要:耐火材料作为钢铁冶炼用高温窑炉的内衬,对其提高热效率、降低能耗起着至关重要的作用。近年来,先进钢铁冶炼用耐火材料轻量化的研究受到广泛关注。基于此,根据轻量化耐火材料的种类,综述了先进钢铁冶炼用轻量化耐火材料的研究进展,以期指导长寿轻量化耐火材料的设计和开发,促进先进钢铁冶炼用高温窑炉的节能减排。耐火材料的轻量化可通过引人轻量骨料和密度梯度的结构设计实现。轻量化耐火材料具有较低的热导率和体积密度,较好的隔热性能,可直接作为工作层使用。轻量化耐火材料的制备技术、种类及损毁机制尚需深人研究。