基于石墨烯和金刚石的可调谐光子器件的研究

摘要:随着5G时代的到来,对光子器件的集成度以及性能指标提出了更高的要 求,而传统器件存在不可调谐、效率低和稳定性差等弊端,限制了其在高集成度、高传输速度光通讯的应用。近年来,金刚石优异的热导率和高折射优势使其成为了研究电磁吸收器件中介质材料的最优材料之一,而石墨烯所具有磁场诱导下的离散朗道能级、可调谐化学势和易于激发太赫兹SPP等,在解决该问题中发挥着至关重要的作用。在此研究背景下,开展了基于石墨烯和金刚石的可调谐光子器件的研究,利用石墨烯化学势可调谐并且易于激发太赫兹 SPP的特性,设计了一种相位型调制双带完美吸收器。研究了金刚石介质厚度、石墨烯化学势和入射角度等参量对电磁吸收器吸收性能的影响规律。该器件实现了对太赫兹信号的 吸 收,具有可调谐、吸收率高和稳定性强等优势。

电力电子中高频软磁材料的研究进展

摘要:随着电力电子行业的飞速发展,新型电磁材料的投入使用,对电子元器件的高频磁性能提出了新的要求。磁芯作为电子元器件的核心部件,其发展程度直接决定电子元器件的性能,这就要求具有优异高频软磁性能的材料发展。本文综述了四种软磁材料的发展历程,对每种软磁材料的优缺点进行了归纳总结,同时指出了未来的发展方向,并重点对近年来研究热门的软磁复合材料进行了梳理。粒径大小可控、包覆层对核层的包覆均匀程度以及从实验室走向产业化的大批量制备方法是未来高频软磁复合材料的发展趋势。

砷化镓衬底加工技术研究及其新发展

摘要:第二代半导体砷化镓(GaAs)材料是衬底外延生长和器件制备的基础材料,其晶片表面要求超光滑、无表面/亚表面损伤和低的残余应力等,且其表面平坦化质量决定了后续外延层的质量,并最终影响相关器件的性能。通过归纳分析砷化镓单晶材料的本征特性及其切割、磨边、研磨、抛光等技术的研究进展,对砷化镓超光滑平坦化加工技术未来的研究方向进行展望。

可穿戴盲文识别装置研制

摘要: 设计了一款基于柔性压力传感器阵列的可穿戴盲文识别装置,以满足视障人士和盲人的信息交流。装置由柔性4×4压力传感器阵列、数据采集模块、上位机软件、语音播报模块和电源构成。该装置中的压力传感器采用二维纳米材料石墨烯油墨,利用精密印刷工艺制作而成,能准确感知压力信号。信号采集模块基于STM32f103c8t6微控制芯片和可靠的电路设计,实现对16个传感点压力信号的采集、转换和计算。上位机软件接收蓝牙传输的数据,实时显示传感点压力值和压力分布映射。语音播报模块对传感点压力分布映射进行盲文信息识别,结果以语音形式播报。该装置可有效识别英文字母和简单的单词。

硅含量对硅铝合金电子封装材料性能的影响

摘 要:以热等静压方法成形的 AlSi12、AlSi27、AlSi35、AlSi42、AlSi50、AlSi60、AlSi70、AlSi80系列的硅铝合金电子封装材料为研究对象,对 Si 含量对材料的金相组织、热物理性能、力学性能等的影响进行分析评估。

超高密度光存储研究进展

摘要:当前,全球数据量正处在爆发增长阶段,为光存储领域带来巨大的发展机遇,然而传统光存储技术的密度受衍射限制,难以满足海量数据的存储需求。为了提升光存储密度,一方面开发了三维空间、偏振、波长等参数为主的多维信息复用技术,另一方面随着纳米技术的发展可突破衍射极限实现超分辨纳米信息存储。本文介绍了超高密度光存储领域的发展现状,分别总结了多维信息复用技术和超分辨光存储技术的代表性成果,梳理不同技术方案可提升存储密度的理论极限,此外,介绍了本课题组基于双光束超分辨光存储技术实现单盘Pb 量级的最新研究进展,最后展望了超高密度光存储面向大数据应用的挑战和发展趋势。

硅基SiC薄膜制备与应用研究进展

摘要:碳化硅(SiC)材料具有极为优良的物理、化学及电学性能,可满足在高温、高腐蚀等极端条件下的应用,碳化硅还是极端工作条件下微机电系统(MEMS)的主要候选材料,成为国际上新材料、微电子和光电子领域研究的热点。同时,碳化硅有与硅同属立方晶系的同质异形体,可与硅工艺技术相结合制备出适应大规模集成电路需要的硅基器件,因此用硅晶片作为衬底制备碳化硅薄膜的工作受到研究人员的特别重视。本文综述了近年来国内外硅基碳化硅薄膜的研究现状,就其制备方法进行了系统的介绍,主要包括各种化学气相沉积(Chemical vapor deposition,CVD)法和物理气相沉积(PPhysical vapor deposition,PVD)法,并归纳了对硅基碳化硅薄膜性能的研究,包括杨氏模量、硬度、薄膜反射率、透射率、发光性能、电阻、压阻、电阻率和电导率等,以及其在微机电系统传感器、生物传感器和太阳能电池等领域的应用,最后对硅基碳化硅薄膜未来的发展进行了展望。

碲锌镉晶体的铟碲共掺杂退火研究

摘要:针对生长态碲锌镉晶体缺陷密度大和电学性能无法满足室温核辐射探测器的制备要求等问题,研究了铟碲共掺杂退火对碲锌镉晶体碲夹杂和电学性能的影响。利用分子动力学方法模拟了不同温度下铟原子在碲锌镉晶体中的扩散过程,获得了铟原子的扩散系数表达式,计算了铟原子扩散至碲锌镉晶体所需理论时长,在此基础上开展了铟碲共掺杂退火实验,进一步优化了退火工艺。实验结果表明,铟碲共掺杂退火70 h的碲锌镉晶体碲夹杂密度下降至27.61mm-2,体电阻率接近1011Ω·cm、漏电流低于4 nA(400V),电学性能达到核辐射探测器应用要求。

微波介质陶瓷产业体系发展研究

摘要:微波介质陶瓷作为微波电路中的电介质,是现代通信技术中的关键基础材料,广泛应用于通信、导航、雷达、卫星等领域。本文在分析国内外微波介质陶瓷及产业发展现状的基础上,剖析了当前我国微波介质陶瓷发展面临的问题,提出了涵盖发展目标、发展思路、重点发展方向以及发展路线图的微波介质陶瓷产业体系自立自强发展战略。为促进微波介质陶瓷的发展,实现我国微波介质陶瓷产品由中低端为主向高端型升级转变,突破高性能微波介质陶瓷制备技术及上游高纯原材料的自主化生产技术,建议加强微波介质陶瓷的基础研究和应用研究、强化重点微波通信领域的创新研发、积极布局第六代移动通信用介质陶瓷和加强产业生态建设。

多材料体系三维集成光波导器件

摘要:随着高速光通信、智能光计算和灵敏光探测等领域的快速发展,光子集成系统正成为重要发展趋势,其对于单元器件性能、系统集成度和可拓展性提出了更高的要求。多材料体系三维集成技术突破了传统单一材料体系的器件性能限制以及二维加工与集成技术的面积与集成度限制,有望实现高速率、高效率、高密度以及低功耗的新型光电集成系统。本文围绕三维堆叠技术和飞秒激光加工技术这两类主要的多材料体系三维集成光波导技术,首先介绍了基于层间耦合器的三维光学耦合技术与三维集成光波导器件,然后介绍了基于三维堆叠技术的光电融合集成器件(光发射机/接收机、波分复用收发器、光互连模块),进一步介绍了基于飞秒激光直写技术的三维集成光波导器件(偏振复用器、模式复用器、扇入/扇出器件、拓扑量子器件)。这些三维集成技术为提升系统性能、提高系统集成度以及降低系统功耗提供了有效的解决方案,从而在先进光通信和光信号处理等领域具有广泛的应用前景。