电子封装铜键合丝的研究进展

摘要:无论是先进封装还是功率封装,高电流密度和更高服役温度将是电子封装的主要趋势。本文综述了当前主流的纯铜、铜合金及镀钯铜键合丝的研究进展,提出利用金、银固有的键合优势开发金包铜、银包铜新型双金属或多金属键合丝材料;通过键合丝进给系统辅热,可以在软化键合丝的同时降低键合的下压力;开发飞秒激光−热声键合新装备,以实现键合丝快速、微区加热,从而降低铜键合丝氧化和硬度。键合丝是集成电路等半导体封装的关键性材料,低成本、高导热的铜键合丝具有明显的优势,势必继续抢占键合丝的市场份额,需加强对大电流、高温及多物理场等极端条件下铜键合丝电迁移、热迁移的可靠性研究,多方协同推动国产化铜键合丝的研究与应用。

压电光子学效应及其应用

摘要:近年来, 压电光子学作为一个新兴的研究领域吸引了学者们的广泛关注. 压电光子学效应是压电半导体的压电极化和光激发的耦合, 是利用应变诱导的压电极化调控材料能带结构进而控制电子-空穴的复合发光过程.压电光子学效应为新光源、智能触觉传感和机械光子学等重要技术提供了研究基础, 尤其结合第三代、第四代半导体材料同时具有压电效应和半导体特性的优势, 有望实现高性能的力-致发光器件. 本文简要介绍了压电光子学效应的基本原理、材料体系以及压电光子学器件的研究进展, 并对这一学科的未来发展进行了展望.

面向神经电子接口器件的有机材料进展与展望

摘要:神经电子接口器件能够在生物体神经系统界面与数字世界之间创建直接连接, 实现信号的采集、操控与反馈,是实现神经系统与外界双向交互的桥梁. 有机分子具有多重弱相互作用, 是与生命体的分子结构和力学性质最相似的光电功能材料, 是用来构筑神经接口材料与器件的理想载体. 本文总结了面向神经电子接口器件的有机材料研究进展,汇总了有机材料在分子设计和聚集态结构调控方面的研究策略, 并展望了神经接口器件的有机材料发展方向.

AI驱动的6G空口: 技术应用场景与均衡设计方法

摘要:为应对6G 系统在容量、频谱效率、能量效率等关键性能指标上面临的严峻挑战, 将人工智能(articial intelligence, AI) 技术引入空口传输已成为重要的技术突破方向. 然而, 当前6G 空口AI 研究主要聚焦于设计高精度AI 模型以提升通信能力, 普遍忽视了工程实践中所需的算力、复杂度和空口资源等AI 代价, 对模型泛化能力和推理时延等关键AI 质量指标也缺乏系统性考量. 这种过度依赖算力资源追求通信能力提升的研究范式, 难以支撑智能化网络的可持续发展. 本文系统分析了AI 在6G空口传输中的典型应用场景与关键技术挑战, 涵盖单功能模块性能增强、多功能模块联合优化以及复杂数学问题低复杂度求解等重要领域; 创新性地提出了综合考虑空口AI 能力、质量和代价的三维联合优化设计准则, 通过最大化多场景通信能力与综合代价的比值实现三角均衡, 有效弥补了现有设计准则中质量和代价维度缺失的不足. 此外, 通过多个设计示例验证了所提方法的有效性, 并深入探讨了空口AI 标准化面临的技术路径与挑战. 本文为6G 空口AI 技术的理论研究、标准化与工程实践提供了参考.

电子浆料用微细金属粉体材料研究进展

摘要:电子浆料是电子信息行业的基础材料,广泛应用于航空、航天、电子信息、通信设备、汽车工业等诸多领域。随着电子信息快速化、高集成化的发展趋势,作为导电相的金属粉体材料要求具备高纯、形貌可控、无团聚、粒径可控且分布窄、氧含量低等特点。本文总结了电子浆料的主要用途,并对微细金属粉体材料的制备方法进行分析,提出了球形、片状微细金属粉体材料制备技术及应用的发展方向。

液态金属在电子热控中的应用进展与挑战

摘要:液态金属作为当下科学和工业前沿的璀璨明珠,不仅是实际应用中不可或缺的重要组成部分,更是一个充满未知奇迹的探索领域。其独特的物理性质使得它在电子热控方面备受瞩目。文中剖析了热控应用中至关重要的典型液态金属的物理参数和性能,深入挖掘了液态金属在电子热控中的应用场景,介绍了它作为热界面材料、相变储能材料和循环工质的现状和研究进展,并进一步阐述了液态金属在电子热控应用中面临的主要技术挑战,提出了应对这些技术挑战的技术途径,指出了液态金属未来的研究方向。

凝胶聚合物电解质在超级电容器中的研究现状与发展趋势

摘要:新型固态超级电容器具有更高的机械稳定性、易操作性和耐温耐候性,既无传统固态电解质易泄露、不便于携带的缺点,也无液态聚合物电解质易腐蚀、易爆炸的风险,是极具市场前景的高功率储能型超级电容器。固态超级电容器需要电解质离子流动性好、导电率高、活性好和机械稳定性高。凝胶聚合物电解质因其具有安全性高、稳定性好和天然无污染性等特点,是目前固态聚合物电解质中适配度最高的一种电解质。根据电解质基底来源不同可以分为天然型和合成型两类聚合物电解质,复合聚合物电解质主要由聚合物基体、添加剂和电解质盐组成。复合聚合物电解质在超级电容器中既充当了导电介质,也起着隔膜的作用。本文综述了不同聚合物电解质的特点,阐述了聚合物电解质对超级电容器储能及电化学性能的影响与作用机制,最后提出了构建高效储能系统所面临的挑战和未来发展的聚焦点。

智能可穿戴柔性压力传感器的研究进展

摘要:柔性压力传感器可以附着在人体皮肤感知外界压力信号,且具有传感范围广、响应时间短、灵敏度和耐久性高等特点,因此被广泛应用于电子皮肤和人机交互等领域。柔性压力传感器通常由柔性基底、活性材料、导电电极组成。其中,一种或多种活性材料通过与柔性基底复合形成传感材料,其受外界刺激产生的变形会引起阻值等变化,进而实现传感功能。此外,通过引入微结构可增加传感材料的可压缩性以及对微小压力的敏感度,提升传感性能。本文围绕薄膜和织物两类基底,综述了在其中掺杂碳基、金属基与黑磷基等活性材料的柔性压力传感器的研究,重点论述了不同传感器的制备方法、机电性能与应用场景,总结了各类传感器的优缺点。在此基础上,对未来智能可穿戴柔性压力传感器如何实现宽范围压力检测、商业化以及制作流程无毒化与长时期生物相容性实验等方面的研究做出了展望。

基于有机半导体的感-存-算自旋器件研究

摘要:利用电子自旋属性进行信息存储、传输与处理, 是未来构建智能感知系统的全新途径. 在自旋电子学领域, 有机半导体材料凭借其极弱的自旋弛豫效应和超长的自旋寿命, 成为实现室温自旋信息应用的理想材料. 有机半导体独特的光电磁特性赋予自旋器件对外界刺激的高度敏感响应能力, 开发了系列功能性有机自旋器件, 为构建智能化的自旋感知系统提供了重要的研究基础. 本文综述了有机半导体材料在自旋输运、自旋界面以及光电磁特性方面的研究进展; 重点探讨了基于此类材料的自旋传感器件、存储器件及有望实现自旋运算的光控自旋态器件的最新成果, 并分析了当前研究中面临的挑战, 展望了面向智能信息系统的功能性有机自旋器件的未来发展方向.

柔性可穿戴碲化铋基热电器件的研究进展

摘要:随着全球能源的消耗加剧,热电器件的开发应用成为解决能源消耗问题的有效途径之一,其中,碲化铋(Bi2Te3) 基柔性热电器件因在可穿戴领域逐步实现应用,得到了学界和业界的广泛关注。然而,受其材料成本较高、刚性结构等多方面因素的限制,Bi2Te3 基柔性热电器件难以在保持高效热电性能的同时,实现柔性可穿戴化应用。本文系统地阐述了当前Bi2Te3 基柔性热电器件在材料复合与柔性结构设计上的研究进展,特别是在柔性结构设计上,涵盖了块状、膜类及纱线型3 种结构。最后,总结分析了Bi2Te3 柔性热电器件未来可能面临的挑战与发展趋势,以期促进热电器件在可穿戴领域实现广泛应用。