SiC车用电机驱动研究发展与关键技术

摘要:碳化硅(SiC)器件具有低导通压降、可高速开关、可高温工作等优点,在车用电机驱动方面显示出巨大的技术优势和市场潜力。论述了SiC MOSFET器件实现高频、高温性能的难点,分别综述了模块、测试、电容、EMI 滤波器、系统集成等方面的技术重点和主要研究方向,介绍了提升电机驱动产品性能的关键。

柔性电化学传感器的材料选择研究进展

摘要:电化学传感器作为传统传感器的一种,具有效率高、响应性好和灵敏度高等优点。而柔性电化学传感器具有这些特点的同时,凭借其优异的柔韧性、拉伸性、可折叠性和电化学稳定性,被广泛应用于医疗卫生、环境监测和食品安全等方面。此外,该类传感器还具有方便携带、成本较低、灵敏度高和选择性好等特点。本文立足于柔性传感器活性材料的选择,从无机材料、有机材料、酶和天然材料入手,通过分析与总结近几年的研究成果,介绍材料的选择对电化学传感器性能的影响,重点阐述了不同材料在柔性电化学传感器方面的制备及应用,表明柔性电化学传感器在生产生活中发挥着不可替代的作用。最后对现阶段柔性传感器的研究应用存在的问题与挑战进行总结,并对其未来发展方向进行展望。

面向毫米波射频互联的超低弧金丝球焊工艺方法研究

摘要:引线键合工艺是实现毫米波射频(RF)组件互联的关键手段之一。随着毫米波子系统的快速发展,毫米波组件的工作频段越来越高,对射频通道互联金丝的拱高提出了新的要求。过高的引线弧度会使得系统驻波变大,严重影响电路的微波特性。球焊工艺由于引线热影响区的存在,难以满足射频互联中短跨距、低弧高的需求。采用弯折式超低弧弧形工艺,通过对25μm金丝热超声球焊成弧过程中各关键参数的优化试验,将热影响区折叠键合在第一焊点上,在保证引线强度的前提下,实现了300μm短跨距、80μm超低弧高的金丝互联,为球焊工艺在毫米波射频组件互联中的应用提供了实现思路。

电缆屏蔽材料的种类及应用

摘要:介绍了金属丝编织防波套、金属复合带、半导电高分子材料、电化学镀屏蔽膜和导电涂料等电缆屏蔽材料的组成、结构、制造工艺、特点、应用及发展现状,有助于电缆制造厂商和用户根据实际工作条件,合理选择屏蔽材料及制造方法。

铜基板面积、焊锡和导电铜箔厚度对高功率密度LED极限光电性能的影响

摘要:高功率密度LED器件能实现传统光源和普通 LED 器件无法实现的诸多功能,将半导体照明技术链推向了一个崭新的高度。在实际应用中,单颗 LED 器件需要在数百瓦及近100 A电流下工作,铜基板面积、焊锡和导电铜箔厚度均会对该类型 LED 器件的极限光电性能这一关键指标产生显著影响。本文将单颗极限电功率为300W和200 W的两种规格的LED蓝光和白光器件,分5μm、100μm 和200μm 三个焊锡厚度,分别贴片焊接在直径为 20 mm、25 mm和32 mm 三种不同面积的热电分离铜凸台基板上,测试了当散热器温度分别为25℃、50℃、75 ℃和100℃时蓝光LED 器件光功率、白光LED光通量及其灯板导线焊点间的电压随电流的变化。同时,还研究了铜基板的导电铜箔厚度分别为70μm 和140 μm 时,极限电功率为 150 W 的蓝光LED 器件的 I-L 特性和 I-V 特性,并对其极限发光进行了研究。研究结果表明,焊锡厚度、铜基板面积和导电铜箔厚度均会对 LED的极限发光强度和工作电压产生明显影响;减小焊锡厚度和增加铜基板面积能显著提高高功率 LED器件的极限光强,P110和 T90两种规格蓝光 LED 器件极限光功率的提升幅度高达16% 和19%,白光器件极限光通量的提升幅度均高达15%左右;当铜箔厚度由70μm增加到140μm、散热器温度为25℃时,P70蓝光 LED的极限光功率提升幅度为 9.2%,50 ℃和75℃时极限光功率提升幅度为12.9%,100℃时极限光功率提升幅度为16.4%。

光电器件中的负光电导效应及应用

摘要:随着信息化时代的高速发展,对微电子器件中光电材料的选择、新功能的开发提出了更高的要求。传统光电器件大多利用半导体材料在光照下电导率增加的正光电导性效应进行功能化设计。近年来,研究发现还存在另一种反常的光电导效应——负光电导(Negative photoconductivity,NPC),即在光照条件下电导率降低,由于其在光电探测、逻辑器件、神经形态器件、低功耗非易失性存储器方面的潜在应用而备受关注。NPC的产生机制一般包括载流子的俘获效应、表面分子的吸附‐解吸、表面等离子体极化激元和局域表面等离子体共振、光辐射热效应等。本文详细讨论了不同光电器件中NPC产生的物理机制,分析了材料选择、器件结构设计、能带结构变化对不同异质结器件中NPC效应的影响,概括了光电器件中负光电导效应的实际应用,这为光电器件的性能优化和新型光电器件设计提供了重要参考,为未来异质结光电信息器件实现尺寸更小、光导增益更高、速率更快、功耗更低奠定了科学基础。

响应型柔性材料系统的向光性驱动

摘要:光响应材料在光刺激下能改变自身的物理或化学性质,因其对电磁波多自由度的高敏感、多维度响应能力,在与传感、驱动相关的多种应用领域中备受关注. 近年来,基于光响应软材料的光驱动系统逐渐完成了从简单的感知、受激作动到持续自主反馈控制的进化,这意味着柔性材料在受到刺激发生形态变化的基础上,逐步具备接受和转化能量的能力,进而实现自主驱动. 一系列基于柔性光响应材料的软体作动系统对与方向实时改变的光源、热源、声源等能量源,表现出方向识别与准确跟踪的能力. 这种“向光性”“趋光性”实现的难点在于让光响应柔性材料识别刺激源的方向并向其作动、在对准方向时停止作动,在受外部扰动、方向失准时自主向光调整,从而在一定程度上体现类似动、植物的自主性.因此,对近年来光响应材料在传感、驱动及自适应调节领域的研究进展进行综述,总结了柔性材料作动从响应型到自控型的发展历程,从传感、驱动、反馈三个组成循环的关键过程剖析其能量转化、传递过程中的物理、化学机制,并展望自控制光响应材料系统在仿生驱动器和软体机器人等研究领域的发展方向与潜力.

深度学习赋能微纳光子学材料设计研究进展

摘要:光子学结构设计是微纳光学器件和系统研究的核心。许多人工设计的光子学结构,比如超材料、光子晶体、等离激元纳米结构等,已经在高速可视通信、高灵敏度传感和高效能源收集及转换中得到了广泛的应用。然而,该领域中通用的设计方法是基于简化的物理解析模型及基于规则的数值模拟方法,属于反复试错的方法,效率低且很可能会错过最佳的设计参数。因此,快速得到设计参数和光谱响应信息之间的潜在关联性,是实现光子学器件高效设计的关键。在过去的几年里,深度学习在语言识别、机器视觉、自然语言处理等领域发展迅速。深度学习的独特优势在于其数据驱动的方法,可以让模型从海量数据中自动发现有用的信息,这为解决上述光子学结构设计问题提供了一种全新的方法。本篇综述从不同的微纳光子学结构设计的应用场景出发,介绍了不同的深度学习模型在光子学设计领域中的适用范围和选择依据,并对该领域未来的机遇与挑战进行了总结与展望。

大尺寸金刚石晶圆复制技术研究进展

摘要:半导体技术的发展离不开大尺寸晶圆的高效制备。在半导体领域,晶圆复制可以通过同质外延生长后进行切割或者基于异质衬底进行异质外延来实现,从而批量生产。金刚石作为新型超宽禁带半导体材料,在电真空器件、高频高功率固态电子器件方面具有良好的应用前景。而由于金刚石材料具有极高硬度,晶圆复制也面临诸多问题。传统的激光切割方法虽然可以实现对超硬特性金刚石进行加工,但其较高的加工损耗已经无法满足大尺寸晶圆的制备需求,呕需开发损耗小、效率高的金刚石晶圆复制技术。文章介绍了目前常见的半导体晶圆复制技术,总结了金刚石复制技术的研究进展及现阶段发展水平,并对未来大尺寸金刚石晶圆复制技术的发展方向进行了分析与展望。

聚多巴胺(PDA)制备的电极材料在超级电容器中的应用进展

摘要: 现今,能源短缺的严峻形势将会逐渐影响人们的生产生活,所以开发新的储能元件成为科学家的研究重点。其中,超级电容器作为一种优异的储能器件,备受关注,但受限于其能量密度和功率密度不高而不能满足大规模的实际应用需求。因此,开发新的电极材料,成为解决此问题的方法之一。聚多巴胺(PDA)作为一种新材料,具有很多优点,如,高碳化率、高粘附性、多种官能团(邻苯二酚、胺和亚胺,大π电子结构)等。将PDA 作为电极材料,是最近才出现的热门课题,PDA 利用自身的高含碳量可以作碳电极;此外,自身含有胺基官能团可进行杂原子掺杂;最重要的是可以作为粘结剂,不仅能牢牢吸附外加材料,而且能够修饰复合材料内部结构,参与赝电容反应,增加复合材料比电容。在本文中我们将根据PDA 与不同物质复合在一起的分类方式,分别介绍PDA 在超级电容器中参与一元、二元、三元复合电极材料的应用。