硅转接板制造与集成技术综述

摘要:集成电路制程发展放缓,具有高密度、高集成度以及高速互连优势的先进封装技术成为提升芯片性能的关键。硅转接板可实现三维方向的最短互连以及芯片间的高速互连,是高算力和人工智能应用的主流封装技术。从硅转接板设计、制造以及2.5D/3D集成等方面,系统阐述了硅转接板技术的发展现状和技术难点,并对相关关键工艺技术进行详细介绍。

静电纺柔性超级电容器电极材料的研究进展

摘要:柔性超级电容器具有充放电速度快、功率密度高和能量密度高等优点,已成为智能可穿戴设备的理想供能器件。其中,优异的电化学性能和良好的柔韧性是供能器件追求的关键性能指标,而电极材料是其中的核心部分。电极材料的制备方法有沉积法、纺丝法、喷涂法、涂覆法和3D打印等,其中,纺丝法中的静电纺丝技术工艺简单、纤维形貌可控性强,且制备的纤维比表面积大、孔隙率高、柔性好,经过碳化处理后,不需要粘结剂就可直接作为超级电容器的电极材料。本文综述了近年来常规和新型静电纺柔性电极材料在超级电容器领域应用的最新研究进展,并对其进行了分类,对比了不同种类电极材料的制备方法和后处理工艺。据文献资料报道,基于静电纺纳米纤维膜碳化处理后的电极材料具有大的比表面积和含碳率,通过后处理优化材料的孔结构或者在表面负载金属氧化物,都可以很好地提升其电化学性能,实现其使用效能。除了前驱体原料外,纳米纤维的形貌、预氧化和碳化温度、升温速率,以及通过活化等后处理形成的孔结构等因素都会对电极材料的柔性产生极大影响。本文通过对电极材料的分类、对新材料的介绍,为研究人员开发和使用新材料提供一个方向。此外,本文对提升电极材料电化学性能的诸多方法以及电极材料产生柔性的原因进行了总结,可以为研究人员开发新型高效的柔性超级电容器提供帮助。

集成电路异构集成封装技术进展

摘要:随着集成电路临界尺寸不断微缩,摩尔定律的持续性受到了越来越大的挑战,这使得不同类型芯片的异构集成技术成为后摩尔时代至关重要的技术趋势。先进封装技术正在经历一场转型,其关注点逐渐从单一器件转向整体系统性能和成本。传统的芯片封装正朝着三维堆叠、多功能集成和混合异构集成的方向发展,以实现集成产品的高度集成、低功耗、微型化和高可靠性等优势。概述了芯片异构集成封装技术的发展轨迹和研究现状,并探讨了面临的技术挑战以及未来的发展趋势。

低成本的p型SnS: 一种有前景的中低温热电材料

摘要:随着能源和环境问题的日益严重, 热电技术在废热回收和电子制冷领域展现出广阔的应用前景. SnS热电材料凭借丰富的地壳储量、低廉的价格以及轻量化等优点, 成为新一代环境友好型热电材料. 近年来, 宽带隙SnS基晶体热电材料的开发, 有望在更宽的温度范围内实现较高的热电能量转换效率. 本综述从SnS热电材料的基本物化性质出发, 分析了SnS的晶体、电子和声子结构, 总结了晶体及多晶材料的合成制备工艺. 在此基础上, 本文系统介绍了p型SnS基晶体和多晶热电材料的优化策略及研究进展. 最后, 针对p型SnS基热电材料当前面临的问题, 提出总结和展望, 以期推动其在温差发电及热电制冷领域的进一步发展和应用.

液晶高分子聚合物的类型、加工、应用综述

摘要:液晶高分子(LCP),简单可分为溶致LCP、热致LCP,其在一定条件下以液晶相存在,有独特的分子取向,兼容高分子、液晶特性。LCP具有高耐热、高模量、低熔融粘度、极小的热膨胀系数、低介电损耗、高机械强度等优异的力学性能、介电性能、光学性能,可广泛应用于高频高速电子通讯、生物医用、复合材料等领域。与聚乙烯、聚丙烯等通用塑性聚合物相比,LCP成型工艺还不够完善,尚有许多问题亟需解决,如填料填充、加工温度、相容性等因素如何影响挤出成型产品性能,理论模型、循环加工次数、相容性等如何影响注塑成型产品性能,拉伸比、加热参数等如何影响纤维产品力学性能。此外,LCP在具体领域应用也存在较多问题,如印制电路板(PCB)加工、表面处理等如何对通信领域的信号产生影响,加工条件、自增强纤维化能力等如何对复合材料性能产生影响,以及生物医学、光学、记忆材料、导热等领域应用的可行性如何等。大量研究结果表明,LCP含量、剪切速率、加工温度、无机填料含量等因素对LCP挤出制品的模量、电阻率、相容性等有影响,增强材料类型、熔融粘度、LCP含量等因素能明显提高LCP复合材料的力学性能。通信领域,LCP在30~110GHz的介电损耗角正切(Df)小于0.0048,进一步优化LCP的PCB加工参数、表面处理,制备的天线具有宽带宽、高效连接等优异性能;生物医用领域,LCP可作为抗原检测、传感器、神经网络的有效组件;复合材料领域,引入LCP、调节加工参数,可使复合材料的力学性能大幅提升。此外,LCP在记忆、光学、导热方面也有较多应用探索。本文对LCP分类进行了介绍,对LCP的挤出工艺、注塑工艺、纺丝工艺进行了说明,对LCP在通讯、生物医用、复合材料等领域进行了综述,并展望了该材料的发展前景。

基于机器学习的芯片老化状态估计算法研究

摘要:随着芯片的集成度越来越高,其晶体管数量也越来越多,老化速度加快。由于工业应用、装备系统等领域对芯片可靠性的要求较高,因此研究估计芯片老化的方法至关重要。总结现有的芯片老化估计和预警的技术方法,将机器学习算法应用于芯片老化状态估计,实验结果表明,极端梯度提升树算法的效果较好。对现有的极端梯度提升树算法进行贝叶斯优化,寻找模型的最优参数,使用优化后的算法估计的状态值与真实值的均方误差比优化前降低了0.13~0.25,优化后的模型预测结果较为精准。

半导体光催化过氧化氢合成研究进展

摘要:近年来, 半导体光催化过氧化氢(H2O2)合成因其相较于传统化学合成方法在能耗和环保方面具有显著优势而受到了广泛关注, 在污染物处理、化学品合成、生物医疗等领域展现出良好的应用前景. 然而, 由于半导体光催化H2O2合成涉及复杂的反应机制以及产物相对较高的化学活性, 其在催化体系的设计、性能评估及优化方面呈现出一定的特殊性, 这也成为了当前研究的重点与难点. 本文聚焦半导体光催化H2O2合成, 对近期该领域的研究进展进行了综述. 在简要介绍H2O2产生机制基础上, 从催化体系筛选、催化反应器设计、性能评估、优化策略开发、应用场景拓展等方面对相关研究进行总结、归纳; 讨论了半导体光催化H2O2合成研究面临的挑战, 展望了该领域未来的研究方向及可能的突破点.

芯片高密度互连电子电镀成形与性能调控技术研究

摘要:信息技术的飞速发展, 对芯片性能提出了越来越高的要求, 芯片中晶体管和电子互连的密度也在不断增加。电子电镀是大马士革以及芯片封装电子互连的主要成形方法, 互连密度的提高对于电子电镀成形工艺及性能调控方法提出了许多新的要求。本文概述了本团队近几年在芯片高密度互连的电子电镀成形方法以及性能调控方面的研究成果, 主要包括3D TSV垂直互连及大马士革互连的填充及后处理工艺、高密度凸点电镀成形方法及互连界面可靠性研究、特殊结构微纳互连的制备及性能调控方法、微纳针锥结构低温固态键合方法、水相化学及电化学接枝有机绝缘膜等工作, 以期对芯片电子电镀领域的研究带来启迪, 推动芯片高密度互连技术的发展。

CVD金刚石膜研究进展

摘要:金刚石由于其优异的声、光、电、热和力学性能,是重要的功能材料之一。金刚石的制备方法主要有高温高压方法和低压化学气相沉积方法。化学气相沉积法因制备得到的样品质量高、面积大,设备简单、可规模化等特性,是合成金刚石膜的重要方法。为了实现低合成压力条件下的金刚石膜的均匀、快速、大尺寸、高质量生长,目前研究人员在金刚石低压生长的控制方面做出了深入的研究。文章综述了近年来化学气相沉积法(包括热丝CVD 法、离子体增强CVD 法、燃烧火焰CVD 法)生长金刚石膜的研究进展,包括金刚石膜的生长机理、关键设备、关键工艺参数等。此外,还详细讨论了生长过程中的关键工艺参数与金刚石膜生长速率和质量的关系,这些对化学气相沉积制备金刚石膜的研究、生产至关重要。

多元素协同晶界扩散:现状与发展

摘要:航空航天、新能源、轨道交通等领域的发展对高性能高温度稳定性钕铁硼永磁提出了紧迫的需求。高性能磁体对战略重稀土Dy、Tb的依赖导致了中国稀土资源应用不平衡的现状,而晶界扩散技术可通过在晶粒表面形成重稀土壳层大幅提升矫顽力,是目前重稀土利用最高效的技术,近年来在国内外引起了广泛关注和大范围产业化推广。然而,目前产业普遍采用纯重稀土及其化合物作为扩散源,存在重稀土容易在表层堆积、扩散深度浅和利用效率低等问题。基于国内外最新进展和作者团队的研究工作,本文讨论了不同元素在钕铁硼中的冶金行为和扩散特性,提出利用轻稀土和非稀土元素部分替代重稀土形成合金扩散源的思路,通过多元素协同作用实现重稀土壳层局域化,大幅提升重稀土扩散效率,降低扩散成本。同时对不同元素在扩散过程中对磁体矫顽力、温度稳定性、力学性能和耐蚀性等方面的作用进行了阐述,并对未来发展方向进行了展望。