高端电子制造中电镀铜添加剂作用机制研究进展

摘要:铜互连电镀是芯片等高端电子器件制造的核心技术之一, 明晰相关镀铜添加剂的作用机制将促进先进铜互连技术的发展。本文针对硫酸镀铜体系, 侧重从方法学角度总结了加速剂、抑制剂、整平剂三类添加剂的界面吸附结构以及在电镀填铜过程中的微观作用机制, 分析讨论了不同研究方法的特点与局限性, 并归纳了芯片互连电镀过程中存在的科学问题, 为先进制程芯片电镀添加剂的研发提供参考。

高压电缆半导电屏蔽料研究进展及关键技术分析

摘要:作为高压电缆重要组成部分,半导电屏蔽层对高压电缆的运行稳定性和使用寿命具有至关重要作用。然而,我国高压电缆半导电屏蔽严重依赖进口,极大程度限制了我国高压电缆自主化生产。基于此,本文介绍了高压电缆半导电屏蔽料国内外发展现状,分析了高压电缆半导电屏蔽料材料组分( 基体树脂、导电炭黑和加工助剂) 的作用及关键评价指标,重点讨论了高压电缆半导电屏蔽料生产制造存在的技术瓶颈: 导电炭黑分散性、电阻率及其稳定性和表面光洁度。最后,对高压电缆半导电屏蔽料的发展方向进行了展望。本文全面系统地综述了高压电缆半导电屏蔽料的研究进展,有望为高压电缆半导电屏蔽料国产化设计与开发提供理论指导。

静电纺柔性超级电容器电极材料的研究进展

摘要:柔性超级电容器具有充放电速度快、功率密度高和能量密度高等优点,已成为智能可穿戴设备的理想供能器件。其中,优异的电化学性能和良好的柔韧性是供能器件追求的关键性能指标,而电极材料是其中的核心部分。电极材料的制备方法有沉积法、纺丝法、喷涂法、涂覆法和3D打印等,其中,纺丝法中的静电纺丝技术工艺简单、纤维形貌可控性强,且制备的纤维比表面积大、孔隙率高、柔性好,经过碳化处理后,不需要粘结剂就可直接作为超级电容器的电极材料。本文综述了近年来常规和新型静电纺柔性电极材料在超级电容器领域应用的最新研究进展,并对其进行了分类,对比了不同种类电极材料的制备方法和后处理工艺。据文献资料报道,基于静电纺纳米纤维膜碳化处理后的电极材料具有大的比表面积和含碳率,通过后处理优化材料的孔结构或者在表面负载金属氧化物,都可以很好地提升其电化学性能,实现其使用效能。除了前驱体原料外,纳米纤维的形貌、预氧化和碳化温度、升温速率,以及通过活化等后处理形成的孔结构等因素都会对电极材料的柔性产生极大影响。本文通过对电极材料的分类、对新材料的介绍,为研究人员开发和使用新材料提供一个方向。此外,本文对提升电极材料电化学性能的诸多方法以及电极材料产生柔性的原因进行了总结,可以为研究人员开发新型高效的柔性超级电容器提供帮助。

液晶高分子聚合物的类型、加工、应用综述

摘要:液晶高分子(LCP),简单可分为溶致LCP、热致LCP,其在一定条件下以液晶相存在,有独特的分子取向,兼容高分子、液晶特性。LCP具有高耐热、高模量、低熔融粘度、极小的热膨胀系数、低介电损耗、高机械强度等优异的力学性能、介电性能、光学性能,可广泛应用于高频高速电子通讯、生物医用、复合材料等领域。与聚乙烯、聚丙烯等通用塑性聚合物相比,LCP成型工艺还不够完善,尚有许多问题亟需解决,如填料填充、加工温度、相容性等因素如何影响挤出成型产品性能,理论模型、循环加工次数、相容性等如何影响注塑成型产品性能,拉伸比、加热参数等如何影响纤维产品力学性能。此外,LCP在具体领域应用也存在较多问题,如印制电路板(PCB)加工、表面处理等如何对通信领域的信号产生影响,加工条件、自增强纤维化能力等如何对复合材料性能产生影响,以及生物医学、光学、记忆材料、导热等领域应用的可行性如何等。大量研究结果表明,LCP含量、剪切速率、加工温度、无机填料含量等因素对LCP挤出制品的模量、电阻率、相容性等有影响,增强材料类型、熔融粘度、LCP含量等因素能明显提高LCP复合材料的力学性能。通信领域,LCP在30~110GHz的介电损耗角正切(Df)小于0.0048,进一步优化LCP的PCB加工参数、表面处理,制备的天线具有宽带宽、高效连接等优异性能;生物医用领域,LCP可作为抗原检测、传感器、神经网络的有效组件;复合材料领域,引入LCP、调节加工参数,可使复合材料的力学性能大幅提升。此外,LCP在记忆、光学、导热方面也有较多应用探索。本文对LCP分类进行了介绍,对LCP的挤出工艺、注塑工艺、纺丝工艺进行了说明,对LCP在通讯、生物医用、复合材料等领域进行了综述,并展望了该材料的发展前景。

芯片高密度互连电子电镀成形与性能调控技术研究

摘要:信息技术的飞速发展, 对芯片性能提出了越来越高的要求, 芯片中晶体管和电子互连的密度也在不断增加。电子电镀是大马士革以及芯片封装电子互连的主要成形方法, 互连密度的提高对于电子电镀成形工艺及性能调控方法提出了许多新的要求。本文概述了本团队近几年在芯片高密度互连的电子电镀成形方法以及性能调控方面的研究成果, 主要包括3D TSV垂直互连及大马士革互连的填充及后处理工艺、高密度凸点电镀成形方法及互连界面可靠性研究、特殊结构微纳互连的制备及性能调控方法、微纳针锥结构低温固态键合方法、水相化学及电化学接枝有机绝缘膜等工作, 以期对芯片电子电镀领域的研究带来启迪, 推动芯片高密度互连技术的发展。

全固态离子选择性电极在可穿戴电化学传感器中的进展

摘要:人体汗液富含丰富的与身体健康状况相关的电解质, 采用可穿戴电化学离子传感器对汗液实时监测可为身体健康提供合理的指导。基于全固态离子选择性电极的可穿戴电化学传感器因能够实时无创地分析生物体液离子受到越来越多的关注。开发新的固接层材料, 探索新的电位响应机理及在可穿戴设备上的应用促进了全固态离子选择性电极的发展。本文综述了全固态离子选择性电极的研究进展, 包括传统的电位响应机理(氧化还原电容和双电层电容原理)和新型固接层材料(导电聚合物、碳和其他纳米材料)以及在可穿戴柔性传感器方面的应用。 最后对全固态离子选择性电极存在的挑战和未来的前景做出了展望。

高性能功率器件封装及其功率循环可靠性研究进展

摘要: 半导体技术的进步使得功率器件面临更高的电压、功率密度和结温,这对功率器件的封装的可靠性提出了更高的要求。如何提高和检测功率器件的可靠性已经成为功率器件发展的重要任务。提升器件封装可靠性主要围绕优化封装结构、改进芯片贴装技术和引线键合技术3个方向研究。功率循环作为最贴近功率器件实际工况的可靠性测试方法,其测试技术、参数监测方法和失效机理得到广泛的研究。对功率器件封装结构、封装技术以及功率循环机理的相关研究进行了综述,总结了近年国内外的提升封装可靠性的方法,并介绍功率循环测试的原理和钎料层、键合线的失效机理,最后对于功率器件封装的未来发展趋势进行了展望。创新点: (1) 从封装结构、芯片贴装和引线键合3 方面讨论了提升功率器件封装可靠性。(2) 总结了功率循环的控制参数、策略、检测参数和失效判据方面的研究。

基于有机场效应晶体管的柔性传感器: 材料、机制与应用

摘要:有机场效应晶体管是一种优良的传感器载体, 具有丰富的传感机制和独特的电信号放大特性. 有机半导体具有质量轻便、机械柔性、可溶液加工、分子结构可调等优点, 适于制备低成本、大面积、多功能的柔性传感活性层. 基于有机场效应晶体管的各类柔性传感器已经广泛应用于智能穿戴、电子皮肤、生物检测、环境保护等领域. 本文总结了近年来柔性有机场效应晶体管传感器的研究进展, 从材料、机制和应用三个层面出发, 介绍有机半导体传感材料的设计原则、有机场效应晶体管的传感机制及其在化学、物理、生物领域的应用. 最后,总结了有机场效应晶体管传感器的研究现状和现存问题, 展望了有机场效应晶体管柔性传感器的未来发展方向.

电子封装陶瓷基板表面镀金修饰与腐蚀机理

摘要:高可靠电子封装基板多通过镀Au进行表面修饰,形成保护层,从而避免表面导体的氧化和腐蚀。介绍了化学镀镍/浸金(ENIG)和化学镀镍/钯/浸金(ENEPIG)这两个主流镀金工艺,探讨了相应镀Au基板变色、氧化、腐蚀等问题的特征、过程和机理。Ni/Au 镀层腐蚀主要与Ni–Au扩散、Ni–P腐蚀、杂质腐蚀等因素有关;Ni/Pd/Au镀层的腐蚀主要由Au层缺陷、镀层剥离、有机污染等原因导致。归纳了镀Au基板的两类腐蚀模型:一类是干热条件下即可完成的氧化腐蚀,另一类是电解质溶液环境中发生的原电池腐蚀。

溅射覆铜陶瓷基板表面研磨技术研究

摘要:溅射覆铜(Direct Plate Copper, DPC 陶瓷基板具有导热/ 耐热性好、图形精度高、可垂直互连等技术优势,广泛应用于功率半导体器件封装。在DPC陶瓷基板制备过程中,电镀铜层厚度及其均匀性、表面粗糙度等对基板性能及器件封装质量影响极大。对比分析了几种研磨技术对DPC陶瓷基板性能的影响,实验结果表明,砂带研磨效率高,但铜层表面粗糙度高,只适用于DPC陶瓷基板表面粗磨加工;数控研磨与陶瓷刷磨加工的铜层厚度均匀性好,表面粗糙度低,满足光电器件倒装共晶封装需求(粗糙度小于0.3μm,厚度极差小于30μm);对于质量要求更高(如表面粗糙度小于0.1μm, 铜厚极差小于10μm)的DPC陶瓷基板, 则必须采用粗磨+ 化学机械抛光(Chemical-Mechanical Polishing, CMP)的组合研磨工艺。