航空发动机及燃气轮机热障涂层高温腐蚀与防护

摘要:热障涂层是航空发动机及燃气轮机热端部件的关键热防护技术。随着热障涂层技术的发展,发动机的工作温度大幅提升,燃油效率和推重比显著提高,但热障涂层却面临日趋严重的高温腐蚀问题,包括环境沉积物(主要成分为CaO,MgO,Al2O3和SiO2,简称CMAS)腐蚀、熔盐腐蚀以及CMAS和熔盐的耦合腐蚀,它们会导致热障涂层过早失效,严重威胁航空发动机和燃气轮机的安全运行。本文综述了CMAS、熔盐、CMAS+熔盐等腐蚀问题的产生和腐蚀机理,重点从新型抗腐蚀热障涂层材料开发、涂层结构设计两方面总结了国内外在抗高温腐蚀热障涂层方面的研究进展。通过全面梳理高温下热障涂层的腐蚀问题及防护方法,展望了未来抗高温腐蚀长寿命热障涂层的研究方向。

吸波材料/结构及吸波-承载功能一体化结构研究进展

摘要:随着现代科学技术的迅速发展,电子信息设备的普及极大改善了人们的生活质量,但随之也带来了电磁干扰与电磁辐射等安全问题,尤其是对于国防军工领域,雷达测试技术的改进升级使武器装备的生存力面对巨大威胁。因此迫切需要开发高性能的电磁吸波材料来抑制电磁干扰与辐射,防止信息泄露。本文以吸波材料与吸波结构应用为切入点,对各种吸波材料的电磁波损耗机制进行了系统地整理,同时探讨了吸波结构的主要应用手段,并以此为基础阐述了吸波材料与吸波结构的研究现状与发展趋势,进一步分析了目前研究发展中吸波材料与吸波结构具备的优势与不足,最后提炼出了吸波领域未来需要解决的关键科学问题,针对现今吸波材料与结构功能一体化研究的不足,提出了关于未来研究方向的关键性建议。在此所讨论的方法与提出的策略有望对未来吸波-承载结构创新型设计提供一定的指导。

空间燃料电池金属钛表面复合涂层制备与性能研究

摘要:金属Ti因其密度小(仅为不锈钢的0.6倍)和比强度高等特点,是轻量化空间燃料电池金属板材料的首要选择,但其在弱酸性环境中长时间工作容易被腐蚀。为了改善金属Ti双极板耐蚀性,采用多弧离子镀技术在金属Ti表面制备了由Ti过渡层及TiN表层构成的Ti/TiN 复合涂层,研究制备工艺参数对Ti/TiN 复合涂层微观结构及力学、电化学性能的影响规律。利用场发射扫描电子显微镜(SEM)分析涂层的微观形貌,利用X射线衍射仪分析涂层的相组成,利用纳米压痕仪评价涂层的力学性能,利用电化学工作站评价涂层在模拟质子交换膜燃料电池(PEMFC)阴极工作环境下的耐蚀性。结果表明:制备工艺参数优化后的Ti/TiN复合涂层具有优异的表面质量和良好的耐蚀性,腐蚀电流密度为6.383 μA/cm2,是金属Ti腐蚀电流密度的0.6倍,Ti/TiN复合涂层显著提高了金属Ti 的耐蚀性,可为空间燃料电池金属双极板表面改性提供技术支持。

300M钢起落架作动筒挤压成形数值模拟

摘要: 针对飞机起落架传统制造工艺中成形载荷大、材料利用率低、生产周期长等问题, 提出利用反挤压工艺制造300M钢起落架作动筒件, 设计了反挤压模具及坯料形状, 并使用Deform-3D进行有限元模拟, 分析了挤压温度为1050~1150℃、挤压速率为30~120 mm·s-1 时挤压过程中温度、等效应变、挤压力的变化规律。结果表明: 随着挤压温度或挤压速率的上升,锻件温度均呈上升趋势, 但温度分布规律基本不变; 锻件挤压前期的挤压力随挤压温度的上升而降低, 后期挤压力差异不显著; 高挤压速率下初始挤压载荷较大, 但曲线更加平稳, 挤压温度为1050℃、挤压速率为120mm·s-1时挤压载荷基本稳定在6.0×106N; 不同挤压温度和挤压速率下的平均应变差分别为4.55%和3.41%, 其等效应变量比例和分布规律差别很小。综合分析, 最佳工艺参数组合为挤压温度为1130℃、挤压速率为30~50mm·s-1。

航空航天用智能纤维与制品

摘要:近年来, 智能纤维与制品在航空航天领域的应用受到了广泛关注. 这些智能材料通过将传感、能量收集、自修复等功能集成到传统纺织结构中, 不仅提高了航空器的性能, 还大大增强了其安全性和可靠性. 本文综述了智能纤维与制品在航空航天领域的最新研究进展, 包括其在结构健康监测、能量回收、振动和噪声控制等方面的应用. 通过详细分析不同类型智能纤维的材料特性和功能机制, 探讨了其在实际应用中的潜力与挑战. 此外, 本文还展望了未来智能纤维与织物在航空航天领域的发展方向, 提出了可能的研究热点和技术突破点, 以期为相关领域的研究和应用提供参考.

新型高强韧锆合金的研究进展及其在航空航天工业中的应用

摘要: 锆具有抗辐照、耐腐蚀、热膨胀系数小和密度低等优异性能。然而,纯锆的强度较低,限制了其在航空航天领域的广泛应用。本文从成分设计优化、组织性能之间的关系和强化机制等方面综述了团队近十几年在高强韧锆合金方面的研究进展,并阐述了所开发的新型高强韧锆合金在航空航天领域的应用。

国产高端装备在航空发动机制造领域应用现状和发展趋势

摘要:航空发动机被誉为“工业皇冠上的明珠”。随着全球制造业竞争加剧,航空发动机制造领域的高端装备自主可控已成为我国航空制造业走向世界航空强国的重要任务。文章系统梳理了国产五轴机床、拉床、3D打印设备及微孔加工设备的技术发展现状、关键成果、存在问题及未来方向。国产五轴机床通过结构创新与工艺优化,逐步实现进口替代;国产拉床在智能化与精密加工领域取得突破;3D打印设备在多轴联动与材料多样性方面持续创新;微孔加工设备则通过复合工艺提升加工质量。然而,核心技术依赖进口、工艺标准化不足、智能化水平较低等问题仍制约行业发展。未来需加强自主创新、推动技术集成、完善标准体系,以促进我国高端装备制造业支撑我国航空发动机产业的高质量发展。

增材制造VNbTiSi轻质难熔共晶高熵合金的组织及力学性能

摘要: 高熵合金与增材制造技术的结合,为极端服役环境下结构复杂部件的一体化制造提供了新的思路。采用激光熔化沉积(LMD)技术成功制备了VNbTiSi轻质难熔共晶高熵合金,通过显微组织分析筛选出最佳激光功率参数,并对试样进行了室温及高温压缩性能测试。结果表明:VNbTiSi轻质难熔共晶高熵合金表现出了优异的打印性能,最佳工艺参数下制备得到的样品在宏观和微观上均没有出现裂纹。在合金底面及沿构建方向,熔池内部与熔池边界(搭接处)均呈现出不同的形貌,熔池内部由柱状的全共晶组织构成,共晶胞为熔池边界出现较为粗大的(Nb,X)5Si3初生硅化物相。相比铸态组织,激光熔化沉积使得共晶组织的片层间距显著细化。增材制造合金不仅在1000℃下压缩强度可达640MPa,在1100℃时依然能够保持高于500MPa的压缩强度,高温压缩性能显著优于铸态VNbTiSi合金。

航空发动机科学技术的发展与创新

摘要:航空发动机是“飞机的心脏”,是实现人类飞行梦想的关键。回顾了发动机技术进步与飞机的发明、喷气式发动机的问世、航空动力领域的持续创新等内容,介绍了高超声速强预冷涡轮发动机、自适应变循环发动机、民用大涵道比发动机、混合电推进技术的发展现状和发展趋势,探讨了国外航空发动机发展的主要经验和重要举措。

航空发动机及燃气轮机用关键材料的激光增材制造研究进展

摘要:增材制造技术可以突破传统工艺的加工和设计局限,实现高性能复杂结构零件的一体化直接成形,在航空发动机及燃气轮机(两机)领域有着巨大的应用潜力。针对镍基高温合金、钛基合金和高强度钢等3类合金,综述了激光工艺参数、成分改性以及外场作用下的微观组织特点和调控方法;比较分析了室温和高温条件下的典型力学性能特征,以及增材制造合金的工艺参数—微观结构—力学性能映射关系,并总结了上述材料在两机领域关键构件的增材制造应用现状和典型案例;展望了面向两机领域关键构件的新型增材制造技术、微观组织调控技术、专用合金体系以及增材制造过程稳定性研究,进一步推动增材制造技术在两机关键领域的推广和应用。