基于纯电车型的前舱组合支架总成优化设计

摘要:针对纯电车型与燃油车型前机舱布置差异,设计出一种适用于纯电车型前舱布置方案的前舱组合支架总成,建立力学模型,并进行计算机辅助工程(CAE)分析,通过对材料、结构改进对组合支架总成进行优化。结果表明,在相同布置方案的前提下,钢制组合支架总成的性能难以满足性能需求,经过材料、结构的优化,铝制组合支架总成可以更好地满足性能需求;相对于钢制组合支架总成,铝制组合支架总成可以实现减重约 2.06 kg,减重率为44.2%,轻量化效果明显。不考虑模具、工装、夹具等费用,零件成本减少约 3.36 元/件,具有量产条件,为纯电车型组合支架总成的轻量化设计提供了一个好的典型案例。

基于辊冲一体式纵梁的轻量化拖挂式房车底盘

摘要:本文将辊冲成型工艺引入拖挂式房车底盘设计和制造。对标某典型拖挂式房车底盘,通过对高强度材料的连续成型,构造一体化的底盘纵梁,并做相应的结构改进,对比分析了两种底盘在满载弯曲和满载制动工况下的受力情况。结果表明:由于辊冲工艺可以实现变截面超长零件的加工和一次冲孔,这一优势带来的材料改进、结构改进和主要构件数量的减少,使底盘纵梁加工在实现轻量化的同时显著提升了生产效率和装配效率。此外,基于高强度板材的变截面纵梁,大大提升了结构的可设计性,进而使承载性能的显著提高成为可能。与某款额定载质量为1.4t的对标底盘相比,结构优化后的底盘可以承受2. 4 t的载荷,且此时两者的变形量相似。

基于超材料声学包的商用车低频降噪研究

摘要:针对传统材料声学包存在低频降噪量不够及轻量化较差等局限性,开展了超材料声学包设计与试验研究。在分析声学超材料隔声性能的基础上,设计了一种九元胞声学超材料,应用有限元方法,进行超材料设计参数确定与隔声量仿真分析。面向某商用车在多种匀速行驶工况下的车内噪声,开展了超材料和传统材料声学包性能的实车试验对比研究。实车验证结果表明,设计的超材料声学包具有比传统材料声学包更好的低频宽带噪声衰减性能,并且质量更轻。该研究结果可为车辆低频降噪提供工程指导。

车身多性能约束下的一体压铸三角梁轻量化设计

摘要:系统性地构建了一体压铸结构的优化方法,基于车身系统超单元模型实现多性能约束下的车身压铸件轻量化设计。首先,缩减复杂的车身系统,针对连续的车体结构,提出了子系统划分原则和方法,分别对各子系统进行超单元缩减,保证车身系统模型的分析精度并提高计算效率,为快速优化奠定基础;其次,同步考虑压铸结构单体性能和车身系统性能,采用折衷规划法归一化静动态子目标并构建综合目标函数,应用层次分析法得到子目标权重系数,进而开展了多模型拓扑优化,确定了加强筋位置分布;进一步地,同步考虑可设计与可制造性,对压铸结构变厚度拔模面进行参数化定义,并在优化过程中施加制造约束,基于构造的组合代理模型完成厚度参数设计。研究结果表明:在保证分析精度的前提下,缩减的车身系统模型可节省97.3%的计算资源;通过优化,在大幅提高车身一体压铸三角梁结构相关性能的同时,可实现轻量化,表明了所提方法的正确性和实用性。

铝合金在新能源汽车车架中的轻量化应用研究

摘要:为提升整车轻量化程度,依据等强度原理和迭代优化方法,采用6082-T6铝合金挤压型材,参考钢制车架结构,设计一种轻量化新能源牵引车车架。通过有限元建模仿真、简支梁模拟计算、多通道台架模拟分析和实物台架试验,对静强度、弯曲刚度、扭转疲劳强度性能进行安全验证,最终车架方案的静强度最小安全因子为1.11,弯曲刚度为1.06×1013 N/mm,且40万次扭转疲劳试验未失效。结果表明,新设计的新能源牵引车车架满足性能要求,在钢制车架基础上实现降重40%。

不同场景下燃料电池汽车氢泄漏的安全研究

摘要:处于不同停车场环境的燃料电池汽车产生氢泄漏时,氢气的扩散规律会受不同的环境条件影响。为研究燃料电池汽车在泄漏事故中的氢气泄放特征及停车场环境对其扩散的影响,建立了封闭、半封闭、开放、通风4种环境条件的停车场下燃料电池汽车氢泄漏的计算模型,分析氢气扩散规律以及氢气浓度随时间和空间的变化规律。结果表明,封闭环境下氢气会由于与空气的挤兑而聚集在车辆正上方的停车场顶部,浓度较高且扩散速度慢;半封闭环境的氢气扩散与封闭环境类似,但氢气聚集浓度明显降低;开放环境下氢气主要聚集在汽车周围,向四周稀释速度较快,相比于封闭与半封闭环境氢气浓度始终比较低;通风环境下氢气会顺着风向向下游扩散,主要聚集在车辆背风处。这些结果可以为燃料电池汽车氢泄漏引起的火灾风险提供参考。

国内客车行业涂装的现状及未来的发展趋势

摘要:从客车生产的特点,车身用材料、涂料、腻子,以及涂装施工方法、设备、环境等方面介绍了国内客车行业的涂装现状,讨论了铝材、碳纤维、电脑喷绘和喷涂机器人在客车车身及其涂装中的应用情况,分析了客车涂装中应用高固体分、水性和无溶剂型涂料存在的问题,指出了客车涂装未来的发展趋势。

汽车零部件自动化热成形生产线关键技术设计

摘要:随着环保、安全因素对车辆的限制越发严格,高强度热冲压成形零件在车辆制造中的比重也逐渐提高,已成为车辆白车身构造不可或缺的重要组成。在介绍热成形技术基本原理的基础上,通过列举关键工艺数据,对汽车零部件自动化生产线的主要构成设备,包括加热炉、冲压机、冲压模具和自动化搬送设备的选型及相关设计内容作了详细介绍。

新能源电动汽车异种材料连接技术的挑战、趋势和进展

摘要:多材料混合结构在车身上的应用可以实现汽车安全性、轻量化水平的共同提升,也是如今新能源汽车工业发展的一个主要方向。先进高强钢(Advanced high strength steel,AHSS)、铝合金、工程塑料以及碳纤维增强复合材料( Carbon fiber reinforced polymer,CFRP)等作为轻质高强材料的代表已广泛应用于白车身、覆盖件以及复杂结构件的制造中。由于异种材料理化性能的差异,给连接技术带来了更大的挑战。对于铝合金与碳纤维增强复合材料的连接,采用普通的熔化焊接往往会使铝合金产生热影响区软化、气孔和热裂纹等缺陷以及CFRP 纤维和基体部分烧损,而机械连接则会不可避免地造成腐蚀问题。同时,多材料组成的电池包壳体对连接技术也有很高的要求。因此,为了向新能源汽车提供多材料优化组合的轻量化车身结构,开发性能可靠、低成本、高效率的创新连接方法势在必行。胶接广泛应用于铝合金/先进高强钢、铝合金/碳纤维复合材料、AHSS/CFRP的连接,可以实现密封、紧固、防腐蚀的效果。自冲铆连接( Self-piercing riveting,SPR)相比于熔化焊更适合铝合金、AHSS与CFRP的连接,国外对其连接工艺和接头强度已有较为成熟的研究。固相焊适合于金属/非金属材料的连接,国内外对回填式搅拌摩擦点焊( Refill friction stir spot welding,RFSSW)和超声波点焊在连接铝合金/CFRP、AHSS/CFRP上进行了工艺的探索和设备的改进。激光复合焊和冷金属过渡焊(Cold metal transfer,CMT) 是当下大部分汽车企业主要应用的连接技术,主要用于铝合金/AHSS 的连接。对于电池包壳体的连接,目前主要是使用紧固件连接,同时对特定的材料采取激光焊进行密封。本文针对多种车身材料包括铝/CFRP、高强钢/CFRP、铝/高强钢的连接问题,详细介绍了胶接、自冲铆连接、搅拌摩擦点焊、超声波点焊、激光复合焊和冷金属过渡焊技术的应用和研究进展,讨论了连接工艺参数对接头性能和焊点失效模式的影响,论述了基于有限元分析的接头疲劳寿命预测的难点和研究现状,并简要分析了电池包箱体连接技术的研究进展。新能源电动汽车多材料混合应用推动了连接技术的进步,但仍然面临着基体损伤、界面失效、焊接周期长、设备昂贵和难以自动化等问题,还需要进行更为深入的理论和应用研究。

搅拌摩擦焊在汽车工业中的应用

摘要:作为一种新型的连接技术,搅拌摩擦焊在轻质材料连接上相对于传统的熔化焊有明显的技术优势。随着新能源汽车的发展,轻质材料获得了较多的应用以达到更高的轻量化水平,提升汽车的续航里程。目前,搅拌摩擦焊在新能源汽车三电系统,如电池包下箱体、液冷板、电动机壳体及电控壳体等已有大规模地应用。随着全铝车身的发展,搅拌摩擦点焊有望在车身连接上取得大范围的应用。