石墨烯和碳纳米管增强铜基复合材料的研究进展

摘要:本文回顾了碳纳米管(CNT)和石墨烯(Gr)增强铜基复合材料的研究进展,探讨了这些复合材料的制备方法、性能提升机制及潜在应用前景。CNT和Gr因独特的物理化学特性,作为铜基复合材料的理想增强相,显著提升了材料的力学性能、导电性和热导率。首先回顾了铜基复合材料的传统制备技术,包括粉末冶金法和机械合金化法,随后介绍了新兴的化学气相沉积(CVD)和电沉积法,这些技术通过直接生长或电化学沉积实现更好的界面结合。对比分析了不同方法的优缺点,指出粉末冶金和机械合金化的成本较低但可能引起增强相分布不均,而CVD法虽能制备高质量材料但成本较高且环境影响敏感。进一步分析了CNT和Gr在铜基体中的分散性及界面结合对性能的影响, 强调了良好分散性和强界面结合的重要性。在力学性能方面,CNT和Gr的分散性和界面结合对复合材料的强化机制起着关键作用,包括载荷转移、晶粒细化和Orowan强化等。此外,讨论了CNT和Gr增强铜基复合材料在耐腐蚀性、 磨损性能及热管理等方面的应用潜力。尽管存在挑战,但这些复合材料在电力传输、电子器件和航空航天等领域显示出巨大应用前景。未来的研究将集中于微观结构控制、制备工艺创新和多功能复合材料开发,以实现更高性能的工业应用。

NdFeB增材制造技术的研究现状及应用展望

摘要:NdFeB稀土永磁体常用于电机或硬盘驱动器,可将电能转换为机械能,其制备过程复杂,涉及多项加工工序。近年来,增材制造等近终成形制造技术迅猛发展,其加工工序具有短流程特点,可大幅降低材料损失、能源消耗、加工周期和人工成本。冷喷增材制造等工艺可用于生产粘结NdFeB磁体。烧结NdFeB磁体的粉末粒度较小,在与增材制造工艺结合过程中难度较大,选择性激光烧结等熔融增材制造法是比较可行的制备方式。间接3打印技术把3D打印与粉末冶金的挤出打印工艺结合起来,有望应用于NdFeB磁体制备。

高熵合金耐腐蚀性能研究进展

摘要:传统合金已难以满足越发苟刻的服役环境要求,而高合金具有高强度、高硬度、高韧性和优异的耐蚀性等独特性能,应用前景广阔。简述了高熵合金的历史沿革,综述了高嫡合金腐蚀行为研究现状,探讨了合金成分、微观结构、热处理与工况环境等主要因素对高合金腐蚀行为的影响,归纳了高合金在石油天然气钻采、石油炼化以及放射性工业领域的应用现状。高合金作为一种新型材料,其材料特性和功能特性较传统合金具有先进性;设计、制备过程中,通过调控合金元素成分、比例及制备、处理方法,均能影响合金性能,其中合金元素是影响合金耐蚀性能的主要因素(影响合金的相结构、微观结构)。尽管日前高熵合金按需设计和处理已经成为高熵合金发展的主流方向,且在试验阶段已展现出卓越的应用价值,但缺乏在实际工况环境中的应用。最后,从高熵合金的设计方法、制备工艺等方面对高炳合金腐蚀与防护等实际应用问题等进行了展望,以期为高熵合金在含苛刻腐蚀介质环境中的安全应用提供新思路。

传统光栅制备技术及非晶合金光栅制备研究进展

摘要:随着科技的飞速发展,越来越多的科学研究聚焦于微型领域,设计和制造的产品尺寸也越来越小,甚至达到了微纳米尺度。当物体的尺寸达到微纳米级别后,其光学性能会发生明显改变,对光的吸收和传输等特性都会产生极大的影响。光栅作为微纳元件的一种,有许多优异的特性,如分束、偏振、色散、相位等,是重要的光学器件。因此,被广泛应用于光通信技术、激光器、诊断测量等众多领域。伴随着科学技术的发展,人类对光栅的要求也不断的提高。基于此,研究学者们对光栅的加工工艺及其所用材料展开了一系列研究。介绍了光栅的定义、分类以及应用等,综述了传统光栅的制备技术和利用非晶合金制备光栅的研究现状及尚未解决的科学问题,并对非晶合金光栅未来的发展机遇与挑战进行了展望。为非晶合金在微机电系统领域的应用提供了理论基础,对推动非晶合金这一新型材料的工程化应用有重要的理论和实际意义。

稀土电催化剂研究进展

摘要:稀土金属为电子结构相似、化学性质相近的17种化学元素,其中镧系元素有独特的4f电子层排列方式,具有丰富的电子能级和氧化价态,能与配体形成多种配位结构,在催化领域受到广泛关注,展现出巨大的应用潜力。本文整理了近年来稀土材料在电催化反应中的应用实例,包括水分解(Overallwatersplitting)、析氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)、二氧化碳还原反应(CO2RR)和氮还原反应(NRR)。系统介绍了稀土催化剂在不同电催化体系中的设计特点,并讨论了提高和改进稀土电催化剂活性、稳定性方面的一般设计思路。最后,对稀土电催化剂的未来发展进行了总结和展望。

材料高通量制备与表征技术研究进展

摘要:材料基因组(MCI)技术是近年来出现的一种材料科学研发新理念,代表着当今世界材料科学研发领域的前沿趋势。通过构建快速响应的材料研发新模式,材料基因组技术可大幅度提高新材料研发效率、减少研发成本、推动材料的工程化应用。作为材料基因组技术的关键组成部分,材料高通量实验技术日前已形成了一系列具有代表性的材料高通量制备与表征技术。阐述了高通量实验在材料基因组技术中的地位与作用,回顾了高通量实验的研究发展历程,介绍了薄膜、块体、粉体材料高通量制备技术以及光学、电磁学等材料性能的材料高通量表征技术。最后指出了在新型材料高通量表征设备开发方面的不足,并结合数据与人工智能对材料高通量实验技术的未来发展方向做出展望。

高熵合金耐腐蚀性能研究进展

摘要:传统合金已难以满足越发苟刻的服役环境要求,而高合金具有高强度、高硬度、高韧性和优异的耐蚀性等独特性能,应用前景广阔。简述了高熵合金的历史沿革,综述了高熵合金腐蚀行为研究现状,探讨了合金成分、微观结构、热处理与工况环境等主要因素对高合金腐蚀行为的影响,归纳了高合金在石油天然气钻采、石油炼化以及放射性工业领域的应用现状。高合金作为一种新型材料,其材料特性和功能特性较传统合金具有先进性;设计、制备过程中,通过调控合金元素成分、比例及制备、处理方法,均能影响合金性能,其中合金元素是影响合金耐蚀性能的主要因素(影响合金的相结构、微观结构)。尽管日前高熵合金按需设计和处理已经成为高熵合金发展的主流方向,且在试验阶段已展现出卓越的应用价值,但缺乏在实际工况环境中的应用。最后,从高熵合金的设计方法、制备工艺等方面对高炳合金腐蚀与防护等实际应用问题等进行了展望,以期为高熵合金在含苛刻腐蚀介质环境中的安全应用提供新思路。

机械球磨法制备二维材料研究进展

摘要:二维材料因具有比表面积大、载流子迁移率及导热系数高等优点而被广泛应用于光学、生物学、材料学和半导体等领域。机械球磨法制备二维材料以其成本低、环保且可规模生产的优势而被广泛应用。本文从机械球磨法的机理及相关模型出发,综述了机械球磨法制备石墨烯、氮化硼和二硫化钼等二维纳米片的研究现状,总结了该方法制备二维纳米材料的优势及存在的问题,并对机械球磨法制备二维材料的发展进行了展望。

等离子物理气相沉积高熵合金涂层及组织性能

摘要:采用等离子物理气相沉积的方法在316L不锈钢表面制备了AlCoCrFeNi 高熵合金涂层,研究了喷涂距离和电流对高熵合金涂层物相组成、表面形貌、截面形貌、硬度、结合强度和耐磨性的影响。结果表明,不同喷涂距离和电流下,高熵合金涂层都主要由BCC、B2 和FCC相组成;随着电流或者喷涂距离增加,涂层中BCC平均晶粒尺寸先增后减。当喷涂距离为460 mm时,随着电流从1600 A增加至2000A,涂层平均摩擦系数逐渐增大,表面和截面硬度先减后增,涂层结合力和结合强度先增大后减小,涂层的磨损率先增加后减小;当电流为1800 A时,随着喷涂距离从420mm增加至500mm,涂层平均摩擦系数逐渐减小,表面硬度先减后增,截面硬度先增后减,涂层结合力和结合强度逐渐增大,涂层的磨损率逐渐减小。高熵合金涂层的磨损率与涂层表面硬度和内聚强度都有一定相关性。

基于碳纳米管涂装的超疏水表面及性能研究

摘要:为了实现绿色环保的方式制备超疏水表面,采用碳纳米管(CNT)涂装与 SLM-3D打印结合的方式制备金属基底的超疏水表面。利用扫描电子显微镜和表面成分能谱分析进行表征,发现碳纳米管成功涂装至3D打印的类水稻沟槽结构上,并呈现出团簇结构。碳纳米管团簇与试样表面的沟槽结构形成了两级结构特征,无需氟硅烷等含氟物质修饰便获得超疏水特性,其接触角为153.1°,滚动角为8.2°。对碳纳米管涂装和氟硅烷修饰这两种方式制备的试样表面进行耐腐蚀性能、黏附性能、机械性能等测试。结果表明:碳纳米管涂装的超疏水表面不仅具有优异的耐腐蚀性能,而且表面黏附力极小,仅为23.2μN。碳纳米管涂装的试样表面经过线性磨损280cm后,接触角依然在150°以上。采用3D打印结合碳纳米管涂装的超疏水表面抗破坏力强,疏水功能稳定。