疏水疏油纤维素基功能材料的制备及其应用研究进展

摘要:基于中国“限塑令”到“禁塑令”的逐步实施,利用可再生可降解生物质基材料代替塑料成为研究热点。纤维素是自然界中最丰富的可再生生物质资源,利用绿色可降解纤维素基材料代替塑料是解决塑料污染的有效途径。本文介绍了纤维素基疏水疏油膜材料、纤维素基疏水疏油纸基材料和纤维素基疏水疏油凝胶材料的制备方法,分析比较了3 种纤维素基双疏材料制备方法的特点,阐述了纤维素基双疏材料在水油分离、耐磨纺织材料、阻燃材料等领域的应用,阐明了疏水疏油机制,并对纤维素基双疏材料的发展方向进行了展望。

减振降噪声学超材料的研究与应用进展

摘要:分析减振降噪声学超材料的研究进展,围绕减振降噪超材料研究领域的3 个方向(拓宽带隙、可调带隙和多功能集成)阐述不同类型超材料的机理,比对其减振降噪特性。并在此基础上进一步介绍声学超材料在船舶海洋等实际工程中的应用。超材料利用对结构(包括几何与材料)的设计改变其等效物性参数,以实现声学设计中阻抗匹配或失配的需求,从而实现减振降噪。分析结果表明,超材料的研发与使用将大大拓展船舶减振降噪途径的选择范围,并可以帮助克服低频减振降噪的瓶颈。

金属纳米材料表面配体聚集效应

摘要:金属纳米材料表面配体不仅可以稳定金属纳米颗粒,辅助合成特定尺寸和形貌的纳米材料,还可用于调控金属纳米颗粒的表面化学性质。由于现有表征技术的局限性,金属纳米材料表面有机配体的结构和功能一直以来并未被深入研究。得益于分子结构明确金属纳米团簇和其他模型纳米材料体系的发展,配体在金属纳米材料表面的精确配位结构及其对催化过程的促进作用正不断被揭示出来。金属表面有机分子配位不仅可以调控表面金属电子结构,还可以分割表面原子周期性结构。表面有机配体的聚集可以进一步在金属表面构筑3D 空间结构,改变纳米材料亲疏水性,并影响催化底物和反应中间体与表面的相互作用强弱和吸附构型。此外,有机配体与表面金属所组成的界面还可以构筑新的活性位点,改变催化反应路径,从而提升催化反应活性和选择性。金属纳米材料表面有机配体的聚集效应使得异相纳米材料可以同时表现出均相催化和酶催化的优势。

增材制造SiC基陶瓷及其强韧化研究进展

摘要:碳化硅(SiC)材料具有轻质、高强、热稳定性良好等优异特性,广泛应用于国防军工、航空航天、能源环保等诸多领域。然而SiC陶瓷在异形结构成形能力和成形性能方面相互制约。传统制造方法可获得高性能的SiC陶瓷件,但难以成形复杂结构。增材制造具有成形复杂结构的优势,但增材制造SiC基陶瓷存在高强和高韧一体化成形性能的挑战。因此,研究高精度、高强度、高韧性的SiC 基复杂结构陶瓷的增材制造具有重要意义。本文系统性总结当前SiC基陶瓷的增材制造原理与方法,并对连续纤维、短切纤维/ 晶须、夹层结构增韧增材制造成形SiC基陶瓷等的问题和难点进行分析与讨论。最后针对SiC 基陶瓷增材制造的发展趋势进行展望,希望为推动大尺寸、跨尺度、复杂结构的SiC基陶瓷部件高精度、高强度、高韧性一体化增材制造成形提供参考。

基于智能纤维和纺织品的可穿戴生物传感器

摘要:随着社会经济发展,人们越来越重视身体健康,对医疗设备的智能化、便携性、准确性要求越来越高。在此背景下,可穿戴生物传感器的市场需求不断提升。智能纤维和纺织品能够满足透气性和可穿戴性的要求,应用在可穿戴生物传感器中能够实时监测人们的身体状况,包括脉搏、呼吸、肢体运动等生命体征监测,汗液、唾液等成分分析和呼出物的检测。相比于传统的生物传感器,基于智能纤维和纺织品的可穿戴生物传感器可用于现场即时监测,从疾病预防、改善临床结果和生活质量到提高生产力、减轻医疗负担和降低医疗成本都发挥着重要作用。在这里,本文主要介绍了近几年智能纤维和纺织品在可穿戴生物传感器中的应用,按照生命体征监测、体液分析和呼出物检测这三个方面,对其传感策略例如比色传感、荧光传感、压电式传感等进行介绍。最后,我们对智能纤维与纺织品在可穿戴生物传感器中的应用状况以及面临的问题进行总结,并对其在可穿戴生物传感器的未来发展进行展望。

高分子材料基因组研究进展

摘要:改变传统专家系统分析的方法,运用信息学中的科学计量方法,即基于信息学的第四研究范式,客观、全面地分析了高分子材料基因组领域的现状和发展趋势。研究表明,该领域已经进入了“快速发展期”,形成了一些稳定产出的学术团队。目前的研究热点主要集中于机器学习策略在高分子材料中的应用,并且在光电材料、高分子电介质材料、高分子纳米复合材料、高性能复合材料和高分子生物材料上取得了一定的进展。最后,结合目前的研究进展探讨了高分子材料基因组未来的发展方向。

基于液态金属的跨波段超宽带极化转换超表面

摘要:在无线通信领域,电磁波传播和极化方向调控对特定信号的识别与接收具有重要意义。提出了一种基于液态金属材质的跨X(8~12 GHz)和Ku(12~18 GHz)波段超宽带极化转换电磁超表面,具有宽频带、高极化转换率、体积小、无机械疲劳损伤、易共形、成本低等优点。该超表面能够实现从7. 595 GHz 到17. 712 GHz 超宽带范围内交叉极化转换或宽带圆极化转换的功能。当阶梯状液态金属结构宽度为1. 6 mm 时,在相对带宽为79. 9% 的7. 595~17. 712 GHz 频带上,超表面极化转换率优于90%,具有共极化向交叉极化转换的功能。当阶梯状液态金属结构宽度为0. 3 mm 时,在相对带宽为12. 30% 的10. 864~12. 288 GHz 频带上,超表面具有线极化向圆极化转换的功能;在相对带宽为3. 54% 的7. 328~7. 592 GHz 频带上,超表面的极化转换率优于90%,具有共极化向交叉极化转换的功能。样品制备及其极化转换特性测试结果表明:实验结果与仿真结果的相对误差为4. 20%,理论设计与实验验证结果一致,进而验证了的跨X 和Ku 波段超宽带极化转换电磁超表面的多功能性和有效性。

热致变色材料智能涂层

摘要:能源与环境现状迫切要求开发出具有节能特性的新一代智能建筑窗户,以有效降低建筑能源消耗。热致变色材料能够根据外界温度变化改变自身光学性质,智能地调节进入室内的太阳辐射能量,且不消耗其他能源,在建筑节能方面具有极大的应用潜力。常见的热致变色材料包括水凝胶、离子液体、钙钛矿、超材料、液晶和VO2等。其中VO2在相变前后透过率在近红外区域明显降低而在可见光范围内保持不变,是热致变色智能窗材料的理想选择之一。本综述概述了热致变色涂层相关材料的工作原理、构筑方法及最新研究进展。首先介绍了常见热致变色材料的结构特性和相变机制。之后以VO2为例,阐明了智能窗涂层表面工程设计和优化方法,讨论了不同构筑手段对光学性能的影响。最后,梳理了目前热致变色智能涂层所存在的不足及面临的困难,并对未来的研究方向进行了展望。

基于二氧化钒的多功能可切换超材料器件研究

摘要:提出一种基于加号单元结构阵列的可切换太赫兹超材料器件,通过引入二氧化钒(VO2)材料,可以在不同的太赫兹频段实现交叉极化转换、线-圆极化转换和宽带吸收,具有多功能的特性。当VO2处于绝缘态时,该结构在多个频段内可实现线-圆极化转换和交叉极化转换;当VO2 从绝缘态转变到金属态时,在1.610~4.010 THz 频段内吸收率超过90%,具有宽频带和高效率等优点。此外,还对太赫兹波入射角度和极化角度对器件的极化转换特性和吸收特性的影响进行研究,证明该结构具有极化不敏感和入射角度稳定性高的特点。研究结果表明:所提器件独特的多层堆叠结构不仅展现出卓越的吸收性能,还能够在多种极化状态下快速转换,在太赫兹成像、通信和安全检测等领域有很大的应用潜力。

共晶高熵合金

摘要:共晶合金是工业上广泛应用的一类铸造合金,具有优异的充型能力、机械性能、组织均匀性以及稳定性等。统计发现,大约70%的传统二元合金中存在着共晶转变,所形成的共晶合金大多性能较差,这主要受限于其固定的共晶点、相体积分数以及有限的相组成。相较于传统共晶合金,共晶高熵合金含有更多的组成元素,同时共晶成分由一个点扩展为一定的成分区间,因而力学性能、物理性能以及化学性能具有更大的调控范围,具有更广阔的应用前景。