氧化纪钡铜(YBCO)高温超导带材在超导储能装置的应用

摘要: 高温超导磁储能系统具有功率密度大、响应快和寿命长等优势,在新能源电网和新能源电动船舶等领域具有潜在的应用前景。二代高温超导带材具有优越的载流能力、较高的工作温度以及相对较低的制备成本,在超导储能装置得领域到了广泛应用。对氧化钇钡铜(YBCO)高温超导带軔特性介绍的基础上,分析储能装置对其的性能要求,阐述代高温超导储能磁体研究现状,并结合10MJ储能磁体的设计进行具体案例分析。

光热材料在海水淡化领域的近期研究进展与展望

摘要:太阳能水蒸发系统成本低、能效高, 对缓解能源危机、减少水污染、促进海水淡化具有重要意义. 然而, 太阳能驱动水蒸发的自然机制往往受到低蒸发率和吸收光谱范围小的影响. 其中, 局部加热并限制热损失的界面水蒸发策略被广泛认可并作为高性能、可持续的太阳能蒸汽产生的有效途径. 随着太阳能水蒸发技术的不断发展, 制备绿色、高效的光热材料已成为研究热点. 根据光热材料的种类将其划分为: 金属材料、半导体材料、碳基材料以及聚合物材料,详细阐述了不同材料的光热转换机制并总结近年来光热材料在海水淡化领域的研究现状及进展; 讨论了潜在的光热候选材料, 对其未来发展做出了展望. 旨在为海水淡化领域中高效光热材料的合理设计和开发提供可行方案, 对今后光热材料的发展具有总结和指导意义.

铁粉的发展现状与建议

摘要:对目前铁粉行业发展现况进行了相关介绍。对产品品种结构、质量状况和存在的问题进行了分析,着重分析了铁粉在粉末冶金行业的应用情况,并为今后发展提出了建议。

导热纸(膜)的研究进展

摘要:电子产品日渐突出的散热问题,引起了人们对电子领域热管理的广泛关注。柔性导热材料具有高韧性、高弹性、高导热、灵活性等特性,可运用于柔性电子器件,轻、薄型电子设备,电池等领域,帮助解决其散热问题。纸张及薄膜具有良好的柔韧性、优异的加工性和厚度可调整性,是良好的柔性导热材料。本文概述了近年来导热纸(膜) 的研究进展,对不同基材的导热纸进行了归纳分类和介绍,重点讨论了纤维素基导热纸的制备方法、导热性能、导热性能测试方法及机械性能。

电磁屏蔽涂料的研究进展

摘要:电磁屏蔽涂料是应现代社会发展需要产生的一类屏蔽电磁波的材料,其主要作用是减少或避免电磁波带给人们的危害、麻烦和不便。针对日益严重的电磁辐射污染,高性能电磁干扰屏蔽材料已经受到广泛的关注,因为它能阻挡来自通信和电子设备广泛使用的电磁辐射,对人类的健康以及信息的安全提供了有效的屏障。介绍了电磁波屏蔽的重要性,电磁屏蔽原理以及电磁屏蔽涂料的研究现状。综述了碳系、金属系、和复合型电磁屏蔽涂料的特点及发展状况,还比较了对于电磁屏蔽效果的影响较大的几种因素,对于电磁屏蔽涂料未来的发展做出了展望。未来的发展趋势是采用复配型填料发挥协同导电性,在涂膜中形成良好的导电涂层,通过对电磁波的吸收,多次反射来实现屏蔽。而且屏蔽剂之间的交联接合达到了事半功倍的效果,不仅使结构更加稳定,且大大提高了屏蔽电磁波的能力。因此积极研发电磁屏蔽技术,发展电磁屏蔽材料对人们的生活以及国家的安定有着深远的意义。

石墨烯层间原位生长碳纳米管薄膜制备及其导热性能研究

摘要:随着电子器件的集成化程度越来越高, 对热管理材料的导热性能提出了更高要求。石墨烯具有很高的面内导热系数, 由石墨烯微片堆叠而成的石墨烯薄膜面内方向具有较高导热性能, 但是其厚度方向导热性能较低。碳纳米管与石墨烯有相同的元素组成和相似的晶体结构, 碳纳米管轴向热导率很高。本文通过将氧化铝颗粒、催化剂二茂铁和碳源PMMA 同时引入氧化石墨烯薄膜层间,在氧化石墨烯薄膜热还原的同时, 原位生长碳纳米管,形成含氧化铝颗粒、一维碳纳米管和二维石墨烯三种材料和多维结构石墨烯复合薄膜。其中, 二维石墨烯片提供高的面内导热性能, 沿石墨烯膜厚度(层间) 生长的一维碳纳米管提供较高的厚度方向导热性能; 氧化铝颗粒作为高导热填料, 填充石墨烯薄膜的层间间隙,连通石墨烯片导热通道; 同时,氧化铝颗粒作为碳纳米管高效原位生长的衬底,显著提高碳纳米管的生长效率, 提高碳纳米管含量, 显著提高石墨烯膜的导热性能。研究结果表明, 厚度为50μm的还原氧化石墨烯复合薄膜的面内导热系数达1006±32W/mk、厚度方向导热系数达7.30±0.16W/mk。

液态金属3D打印技术进展及产业化前景分析

摘要: 3D打印技术,特别是低熔点金属3D 打印技术代表着未来先进制造技术的发展趋势之一,是推动我国制造业转型升级,实现由“制造业大国”向“制造业强国”转变的重要机遇。文章简述了当前3D打印特别是低熔点金属3D打印技术的研究现状,介绍了国际3D 打印产业的发展现状,剖析了我国3D 打印产业发展所面临的机遇和挑战。特别指出,现有通行的3D打印大多面向单目标种类材料,或者金属或者非金属,尚不易同时实现跨度较大的多种类材料的同时打印,这主要是因各种材料在物理化学特性如熔点、黏附性及彼此间相容性上存在的巨大差异所致,而新出现的低熔点金属3D打印方法将有助于改变这一格局。最后对液态金属3D打印技术的未来发展进行了总结和展望。

低碳能源化工AI基础模型与新材料智能发现平台

摘要;实现“双碳”目标需要能源、化工和材料等多个领域协同, 但其核心科学问题解决与关键工程技术实现的速度受传统研发范式掣肘, 亟需突破. 以基于“小数据”的主动学习和基于“大数据”的基础模型为代表的人工智能(AI)技术深刻改变了领域研究范式, 垂直领域AI基础模型重构并建立了低碳能源化工领域的新一代知识网络,新材料智能发现平台标志着AI for Science的研究新范式在低碳能源化工领域的落地. 近年来, 研究者在低碳能源化工领域的多层次多尺度主动学习框架和AI基础模型上开展了一系列研究, 本文将详细介绍相关工作并对低碳能源化工与人工智能交叉领域的机遇、挑战与展望进行讨论.

非钢制关节轴承制造材料研究进展

摘要:随着对关节轴承性能要求的不断提高,寻找新材料替代钢材制备高性能的关节轴承已经成为一个重要研究方向。对非钢制关节轴承内外圈材料及其处理工艺、衬垫和涂层材料进行了详细介绍,针对非钢制关节轴承内外圈材料存在铝合金加工难,钛合金成本高和自润滑层存在摩擦磨损性能较低的问题,提出具有优异摩擦性能,力学性能好、耐腐蚀、易加工的内外圈材料和制备工序简单、低摩擦、高寿命的自润滑层材料是未来非钢制关节轴承材料的发展方向。

碳化硼陶瓷自润滑研究现状

摘要:碳化硼(B4C)陶瓷的自润滑对其摩擦学性能具有重要影响,但缺乏这方面的系统性综述介绍。碳化硼具有高的硬度(维氏硬度为36 GPa),因此碳化硼陶瓷是一种应用于耐磨元件的潜在候选材料。然而,碳化硼陶瓷的摩擦因数较高,增加了摩擦系统的能耗,限制了其广泛应用。自润滑是一种可避免外部润滑剂造成污染的方法,揭示碳化硼陶瓷自润滑的机理可为解决碳化硼陶瓷摩擦因数高的问题提供可行参考方案。目前碳化硼陶瓷自润滑的方式主要有预氧化、添加固体润滑剂、构建表面浮雕结构三种。预氧化是将碳化硼陶瓷预先在空气环境中进行高温下氧化处理,使其表面生成氧化层;添加固体润滑剂是将具有层状晶体结构的材料添加到碳化硼陶瓷基体中,在滑动过程中固体润滑剂从碳化硼陶瓷基体中脱落,从而在碳化硼陶瓷的磨损面上形成一层外部润滑层;构建表面浮雕结构是在碳化硼陶瓷基体中引入硬度相对较低的第二相,利用两相晶粒的硬度差,在滑动过程中原位生成凹凸的表面形貌。这些自润滑方法虽然存在技术上的局限,但仍可在一定工况下实现碳化硼陶瓷的自润滑,减小摩擦副的摩擦因数,降低摩擦系统的能耗。总结近年来碳化硼陶瓷自润滑的相关研究进展,并对碳化硼陶瓷自润滑未来的研究方向进行展望,研究结果填补了碳化硼陶瓷自润滑领域目前缺少综述文章来引领的空白,可为碳化硼陶瓷自润滑的设计、研究及应用提供有益的指导。