水系锌离子电池钒基正极材料储能机制、存在的问题及其改性策略

摘要:中性或弱酸性体系下的水系锌离子电池(AZIBs)因高安全、低成本及高能量密度等特性成为近年来研究的热点。其中,备受关注的钒基化合物具有比容量高、结构灵活多样等优点在AZIBs领域展现出了广阔的市场应用前景。主要总结了钒基材料的4种反应机制并叙述了钒基正极材料在AZIBs中的研究进展, 在AZIBs中,Zn2+有着较大的离子半径,随着循环的进行Zn2+不断嵌入/脱出, 引起材料结构的变化,从而导致活性物质从导电集流体上脱落,严重影响电池的循环寿命; 钒基材料本身的导电性能较差,不利于电子的转移;钒基材料在AZIBs中的电压窗口比较窄。针对这些问题,主要从离子和分子预嵌、表面修饰和复合材料制备、缺陷设计及金属离子掺杂、自支撑电极结构设计、电解液优化等5个方面进行了总结,并对未来AZIBs钒基正极材料的研究方向进行了总结与展望。

有机太阳能电池溶剂退火表征技术研究进展

摘要:有机太阳能电池(organic solar cells, OSCs)因其成本低及其轻量化和可调性等显著优势成为一项重要的绿色能源技术. OSCs活性层的形貌调节和结晶度关乎器件性能的优劣. 因此, 人们提出了各种优化形貌和调节结晶度的后处理策略, 如热退火(TA)、溶剂退火(SVA)、添加剂等. 但是添加剂较差的相容性会影响器件性能. TA和SVA都作为目前流行的后处理策略, 热退火是通过加热给分子提供驱动力, 进而对活性层表面形貌进行优化.而与热退火不同的是, 溶剂蒸气退火能够渗透进薄膜内部为分子运动提供自由体积, 因其操作简单和调控手段灵活等优势而引起了人们的兴趣. 然而, 由于溶剂蒸气对OSCs活性层的影响机制还不明确, 这抑制了SVA的发展. 因此, 本文总结了目前被广泛应用的几种动力学表征技术和装置, 包括拉曼荧光光谱(PL)、紫外-可见光吸收光谱(UV-vis)、掠入射广角X射线散射(GIWAXS)和掠入射小角X射线散射(GISAXS)等, 研究人员可以通过这一综述全面了解SVA的动态过程, 从而有可能提高器件性能. 最后, 展望了SVA表征技术在OSCs中面临的挑战和未来发展方向.

复合型能源电池研究进展

摘要:与摩擦纳米发电机(TENG)单纯收集环境机械振动能量相比,与TENG相结合的新型复合能源电池能够收集多种形式的能量,具有更宽的工作频率范围和更好的输出性能。近年来,复合型能源电池逐渐向小型化、便携化、智能化发展。分别从TENG与太阳能电池、电磁发电机、压电纳米发电机、多种类型发电机以及其他能源电池相结合等几个类别,综述了复合型能源电池在工作模式、结构、能量输出、应用等方面的研究进展,讨论了复合型能源电池面临的挑战。对其发展前景进行了展望,认为复合型能源电池需要进一步在集成化、大功率、长寿命等方面深入开展研究。

钛基金属有机框架材料光催化分解水制氢的研究进展

摘要:钛基金属有机框架(Ti-MOFs)因其优异的光电性质和光催化性能、化学稳定性和低毒性以及多样化的结构,被认为是光催化分解水制氢领域中最具吸引力的MOFs之一。综述了近年来Ti-MOFs及其复合材料和衍生多孔材料在光催化制氢领域的进展。通过染料敏化或选择合适的官能团和金属节点会对Ti-MOFs的光响应及光催化活性产生重要影响。为进一步提高光催化析氢性能,可引入金属离子或与其他半导体结合形成多功能复合材料。此外, 通过在合适的条件下煅烧Ti-MOFs前驱体可制备更多新颖高效的光催化剂。最后,从关键的角度讨论了Ti-MOFs及其衍生多孔材料未来在光催化分解水制氢领域的机遇和挑战。

2024 年柔性电池研发热点回眸

摘要:随着柔性电子技术的发展,柔性电池因其可弯曲、折叠和拉伸等特点,成为可穿戴设备、软体机器人和植入式医疗设备等领域的重要技术。综述了柔性电池领域的研究进展,包括其关键组成部分、制造技术及实际应用案例等。详细探讨了柔性电池的核心组成材料,包括柔性电极、电解质和集流体的最新进展及其在性能提升方面的作用。介绍了柔性电池制造中所采用的先进技术,如静电纺丝、3D 打印等,并分析这些技术在柔性电池制造中的优势和局限性。结合当前技术瓶颈探讨了柔性电池的未来发展方向和潜力。

低温金属离子电池负极材料的研究进展

摘要:环境污染与温室效应的日益严重促进了清洁二次能源的发展与利用。具有高能量密度、环境友好等特性的锂离子电池成为最佳的储能载体。但当温度低于0℃时,传统石墨负极难嵌锂,电池性能急剧恶化,且低温充电时易析锂引发安全问题。为了满足锂离子电池的低温应用需求,通过改变电解液成分使其熔点降低,并调节SEI成分与去溶剂化过程,能够降低电荷转移阻抗,但石墨负极的本质属性使其低温应用受到限制。为从根源上解决锂离子电池低温性能差的问题,需要寻找具有适中工作电位、高离子扩散能力、高容量的新型负极材料替代传统石墨负极。嵌入式负极材料中,钛酸锂和二氧化钛具有较好的低温与倍率性能,但能量密度较低,应用范围受到限制,研究重点在于进一步挖掘其低温高倍率能力,使其应用在较为恶劣的服役环境中。合金的嵌锂反应在低温下较易进行,并且能够提供较高容量,其是极具潜力的锂离子电池低温负极材料,可以通过复合结构设计与表面改性提升其低温性能与循环寿命。基于转化反应的负极材料通常具有较高的赝电容效应,较快的表面反应受温度的影响较小,能够在低温下实现快速的充放电,通过纳米结构设计等方法能够进一步增强材料的赝电容效应。尽管Na、K、Mg 等新型金属离子电池能量密度较低,但资源丰富,并且本征低温性能优于锂离子电池,在寻找与之适配的负极材料后有望成为重要的低温储能器件。本文根据金属离子在负极材料中的存储方式来分类,综述了低温锂离子电池以及新型金属离子电池负极材料的研究进展,并展望了低温负极材料的发展趋势。

MXene复合气凝胶在电化学储能领域的研究进展

摘要:MXene材料目前已在电磁屏蔽、传感、污水处理等多个领域具有广泛应用,其优异的电化学性能使得其在储能领域也展现出广阔的应用前景。然而,MXene 的自堆叠与易氧化等特性,限制了其进一步发展。将MXene组装成三维(3D)结构复合材料是解决上述问题的有效途径之一。3D多孔结构能为离子传输/存储提供更多通道和活性位点,可有效提高电化学性能。本文主要回顾MXene复合气凝胶的最新研究进展,详细阐述MXene复合气凝胶的制备方法以及其在电池、超级电容器等储能方面的应用。最后,对其发展方向进行了展望。

含杂原子有机硫正极材料研究进展

摘要:有机电极材料具有安全环保、材料可再生、结构可设计和价格低廉等优点, 是一种很有前途的高容量锂电池正极材料. 其中, 有机硫化物随着锂-硫电池的发展而受到越来越多的关注. 与硫正极类似, 基于S–S键可逆的断裂与重组, 有机硫化物可以提供相对较高的理论容量. 然而, 有机硫正极材料的电导率较差、氧化还原动力学缓慢、循环稳定性不理想和循环产物易溶解等固有问题严重影响了其发展前景. 通过在有机硫分子中引入杂原子来设计和合成新的有机硫分子是一种有效的策略. 杂化有机硫正极材料因其独特的设计策略和灵活的电化学调控而受到越来越多的关注. 基于此, 本文综述了含杂原子的有机硫化物作为可充电电池正极材料的研究进展, 总结了杂化有机硫正极的反应机理和调控机制, 并对其存在的挑战和未来的发展前景进行了讨论.

空间太阳电池柔性封装材料与技术研究进展

摘要:基于深空探测、空间电站以及商业航天、微纳卫星、长航时临近空间飞行等任务需求,高效率、轻量化、柔性化、高可靠性是未来空间太阳电池阵发展的主题。太阳电池阵由传统的刚性电池阵、半刚性电池阵向柔性电池阵发展。航天器在轨服役过程中需遭受带电粒子辐射、紫外辐射、原子氧等空间环境,因此需在电池表面封装防护层以减缓电池性能退化。作为太阳电池辐射屏蔽层,盖片的辐射防护性能、光学性能、力学性能是保证电池长期在轨高效稳定运行的核心要素。本文总结了近年来聚硅氧烷、透明聚酰亚胺、赝形玻璃盖片等太阳电池柔性封装材料研究进展,归纳了相关的空间环境模拟试验与在轨暴露试验结果,最后针对太阳电池柔性封装材料与技术的发展及应用进行了探讨展望。

基于CNT的柔性自支撑锌空气电池正极研究进展

摘要:随着可穿戴智能设备的不断发展, 柔性锌空气电池(FZAB)作为新一代极具应用前景的储能系统受到了广泛关注, 但其二次电池的实际应用仍处于起步阶段. 如何优化其柔性结构并提高电池性能是目前研究的关键与重点. 碳纳米管作为新一代超级纳米材料, 具有优异的导电性、柔韧性、质轻等特点, 为柔性锌空气电池的发展提供了新的方向和选择. 为了探究碳纳米管纤维材料在自支撑锌空气正极中的潜在应用, 本文从碳纳米管的合成方法与构效关系入手, 通过阐述锌空气电池的电化学工作机理与柔性化设计, 总结了碳纳米管在FZAB应用中所发挥的不同作用, 综述了近些年来基于碳纳米管的柔性自支撑空气正极的研究进展, 讨论了目前碳纳米管与自支撑空气正极发展所面临的问题, 并对未来进行了展望. 旨在为纺织、纤维、材料及电子等领域的相关从业者进行柔性锌空气电池(FZAB)的研究与开发提供一定的参考与指导.