废旧锂电池综合回收利用技术研究

摘要:为解决当前废旧磷酸铁锂电池造成的环境污染以及锂资源供不应求的问题,利用回收的废旧磷酸铁锂电池为原料,创新性地提出了一种双极膜的方法:酸浸所得Li2SO4经双极膜电渗析制备LiOH,进而获得精制Li2CO3,最终制成电池级LiFePO4正极材料。主要工艺包括磷酸铁锂电池破碎分选、黑粉浸出、料液除杂、磷酸铁以及磷酸铁锂的合成,从而获得Li2CO3、FePO4主产品及铝粒、铜粒等副产物,并通过合成再生技术,获得了符合GB/T30835-2014中Ⅰ级品标准的LiFePO4正极材料。所制备LiFePO4产品具有96%以上的首次库仑效率及94.5%以上的倍率性能。该工艺达到了节约LiFePO4生产成本、实现可再生资源回收利用的目的。

新型能源技术对未来装备发展的影响

摘要:近年来,高比能可充电电池、太阳能电池、柔性电源、燃料电池及其他新能源技术飞速发展,甚至呈现出爆发式发展的态势。这些动力与能源技术具有高度的军民两用性和军种通用性,其快速进步将带来装备形态、使用方式、部署模式的改变。主要体现在:高比能电池、小型便携式电源、能量回收技术有望打造能长期独立作战的超级士兵系统;燃料电池技术通用性强,可用于潜艇、战车及各种无人平台;无人干预充电尤其是无线充电技术,将大幅提升作战无人平台的作战半径;太阳能、波浪能、海洋温差能、微生物燃料电池等新能源技术有望实现无人值守传感器的无限续航力。

CO2管道输送技术进展与未来发展浅析

摘要:二氧化碳管道运输技术是二氧化碳捕集技术和利用技术的纽带,连接着起源地和储存地,可以持续不间断地输送二氧化碳,经济效益高、性价比高,符合可持续发展的准则,其中超临界输送是未来二氧化碳管道输送的主要方式。从管道输送的原理、国内外CO2管道输送技术现状、国内外CO2管道安全输送控制技术研究以及典型CO2管道输送示范工程四个方面入手,系统、具体地介绍了CO2管道运输的发展,同时展望了未来发展的趋势。

2021年中国储能技术研究进展

摘要:本文对2021年度中国储能技术的研究进展进行了综述。通过对基础研究、关键技术和集成示范三方面的回顾和分析,总结得出了2021年中国储能技术领域的主要技术进展,包括抽水蓄能、压缩空气储能、飞轮储能、铅蓄电池、锂离子电池、液流电池、钠离子电池、超级电容器、新型储能技术、集成技术和消防安全技术等。研究结果表明,中国储能技术在基础研究、关键技术和集成示范方面均取得了重要进展,中国已经成为世界储能技术基础研究最活跃的国家,也已成为世界储能技术研发和示范的主要核心国家之一。

Pd基二元合金膜应用研究进展

摘要:Pd基合金膜对氢气具有唯一渗透性和高渗透率,在氢气生产、应用、回收、探测等领域有着广阔的应用前景。PdAg,PdCu,PdAu,PdPt,PdRu为近年来Pd基二元合金膜的研究热点,对它们的研究重心也逐渐由提高合金膜的氢渗透性能,转向了对循环稳定性、高温稳定性、抗毒化性能及膜反应转化率等综合性能的优化。其中PdAg与PdCu合金膜的技术成熟度高,已在具有商业价值的重整制氢反应器及氢气净化器中投入使用。PdAu,PdPt,PdRu合金膜在实验研究中的优异表现,也展示了其在商业应用中的巨大潜能。介绍了上述几种Pd合金膜在重整制氢、脱氢加氢反应器及氢纯化器中的最新研究进展,讨论了其在实际应用中面临的问题与挑战, 提出了不同Pd合金膜可适应的服役条件及可行的优化方案。最后对Pd合金膜开发与应用的发展趋势作了展望,指出了Pd合金膜抗毒化性能的提升仍然是未来研究的重点。

固态电解质中的聚合物复合体系研究进展

摘要:固态聚合物电解质因其质量轻、柔性好,且与电极材料接触良好、界面阻抗小,成为开发新一代高能量密度、高安全性乃至高柔韧性电化学器件的潜在材料,近年来获得了广泛关注。但因其离子电导率低、力学性能差等缺陷也成为限制其进一步商业化的关键问题。通过交联、共混、共聚等手段组成聚合物的复合体系有可能很好地解决这些问题,因此本文首先对聚合物中的离子导电机理进行了简要介绍,旨在从原理的角度阐释上述问题的解决策略;随后综述了近年来多种聚合物基复合电解质在电化学器件中的应用以及改性策略。最后对复合固态聚合物电解质目前面临的基础研究和实际应用问题进行了讨论,给出了解决这些问题的建议,以期为新型聚合物复合固态电解质的设计与制备提供新思路。

锂离子电池三元层状氧化物正极材料的研究进展

摘要: 锂离子电池被认为是实现动力电池规模化应用的最有前途的储能体系之一。但是传统锂离子电池的能量密度、功率密度及安全性等方面还无法满足电动汽车规模化发展的需求。正极材料作为锂离子电池中唯一提供锂离子的材料,其性能好坏直接影响了锂离子电池的性能。因此,开发兼具高能量密度、高功率密度、高安全性且价格低廉的正极材料极为重要。三元层状过渡金属氧化物正极材料因具有理论容量高、造价低、毒性低等优点被认为是下一代锂离子电池最具潜力的正极材料。但是,在高电压下却存在循环不稳定、倍率性能差及存储性能差等问题,制约了其在电动汽车上的广泛应用。元素掺杂和表面包覆等改性策略能有效克服三元材料存在的缺陷,提高三元正极材料的性能,一直是锂离子电池正极材料领域的重要研究方向。本文简述了常见的几种正极材料,着重介绍了三元层状过渡金属氧化物正极材料的优缺点和改性进展。

钠离子电池隧道型氧化物正极材料研究进展

摘要:钠离子电池(SIBs)凭借其资源循环性和成本优势表现出强大的商业化应用前景。钠离子电池正极材料中的隧道型氧化物具有独特的三维隧道结构,使得Na在充放电过程中能够更加灵敏地脱出和嵌人,这种隧道型氧化物具有优异的循环稳定性,可以充分发挥材料的电化学性能,因而得到广泛关注。本文针对钠离子电池隧道型氧化物正极材料的制备方法及应用进行阐述,并对隧道型氧化物正极材料的掺杂和包覆改性进行介绍,总结了隧道型氧化物正极材料的优缺点,并针对隧道型氧化物的不足提出建议,对未来的研发方向做出展望。

钼及钼合金在核领域应用研究现状与展望

摘要:核能系统苛刻的服役环境对核用材料提出了极高的要求。钼及钼合金因其优异的高温力学性能、较低的热膨胀系数、良好的导热性与液态金属相容性以及相对低的中子捕获界面,使其成为满足新一代核能技术发展的重要候选材料。本文综述了几种典型的钼和钼合金的力学性能及其在核反应堆环境下的应用、抗腐蚀性能和抗辐照性能研究现状,展望了本领域需要进一步关注的热点问题,期望为满足核领域不同用途钼及钼合金的成分、组织、性能设计研究提供思路。

2023 年镁基储氢材料研究热点回眸

摘要:2023年,镁基储氢材料及其固态储运氢技术研发与应用发展迅猛,热点频现,出现了诸多显著成果。在材料设计开发方面,通过多种改性手段有效改善了镁基储氢材料的热/动力学性能,实现了材料在近室温条件下吸氢,200℃以下放氢,循环寿命也在不断提升。在工程应用方面,全球首台吨级镁基固态储运氢车问世,多个示范应用项目与材料生产线开始落地建设。社会各界都在关注并积极推动镁基储氢材料与系统的研发,努力探索潜在的产业应用。根据镁基储氢材料的催化改性、纳米化改性、合金化改性、系统装置开发和示范应用五大方向,总结了2023年国内外镁基储氢材料的重要进展,探讨了镁基储氢材料在氢储运、氢储能和固体氧化物燃料电池发电等领域的应用场景,展望了镁基储氢材料在2024年所面临的机遇与挑战。