可编织柔性纤维状水伏纳米发电机

摘要:可穿戴设备在医疗健康、物联网和机器人等领域具有广泛需求, 其发展具有小型化、轻量化、柔性化的趋势, 然而便携式、持续稳定的能源供给方式是限制其应用的瓶颈问题. 基于水伏效应的新型环境能源捕获技术为解决可穿戴设备的持续能源供给问题提供了新的机遇. 相关研究表明, 碳纳米材料在对水能的转换与利用中展现了独特的优势. 本文以导电炭黑为水伏材料, 通过简易的浸涂法及材料表面浸润性调控, 制备了水伏效应和原电池反应产能机制协同作用的可编织柔性纤维状水伏纳米发电机. 其在纯水及多种盐溶液中均能实现持续稳定的产电, 突破了目前水伏发电机对于水源中极低离子浓度要求的限制. 值得一提的是, 该水伏纳米发电机可以利用人体汗液直接发电, 有望作为柔性可穿戴设备稳定的能源供给方式, 解决柔性电子器件的持续能源供给问题.

数据驱动储能电池新材料的筛选和设计

摘要:数据驱动新材料产业发展是第四研究范式促进材料创新, 加快材料应用的多学科多领域交叉融合的技术热点。机器学习(machine learning, ML)作为一种重要的数据驱动方法, 其结合第一性原理计算在材料科学、化学、物理学和计算机等跨学科领域展现出巨大的优势, 为储能电池新材料的快速发展带来了新的机遇。为帮助研究人员了解这一新兴领域, 本文系统地详述了高通量计算筛选和ML在储能电池材料研究中的最新进展, 概括和总结了目前国内外应用较为广泛的在线材料数据库, 举例介绍了新数据库的多层次构建, 分析了目前数据采集方面的一些难点。论文进一步介绍了ML方法在高通量计算筛选、材料性质预测、材料结构与电化学性能构效关系研究和材料设计方面的应用实例, 最后分析讨论了当前ML在储能电池领域面临的一些挑战, 并展望了该领域的前沿研究。

复合型能源电池研究进展

摘要:与摩擦纳米发电机(TENG)单纯收集环境机械振动能量相比,与TENG相结合的新型复合能源电池能够收集多种形式的能量,具有更宽的工作频率范围和更好的输出性能。近年来,复合型能源电池逐渐向小型化、便携化、智能化发展。分别从TENG与太阳能电池、电磁发电机、压电纳米发电机、多种类型发电机以及其他能源电池相结合等几个类别,综述了复合型能源电池在工作模式、结构、能量输出、应用等方面的研究进展,讨论了复合型能源电池面临的挑战。对其发展前景进行了展望,认为复合型能源电池需要进一步在集成化、大功率、长寿命等方面深入开展研究。

钛基金属有机框架材料光催化分解水制氢的研究进展

摘要:钛基金属有机框架(Ti-MOFs)因其优异的光电性质和光催化性能、化学稳定性和低毒性以及多样化的结构,被认为是光催化分解水制氢领域中最具吸引力的MOFs之一。综述了近年来Ti-MOFs及其复合材料和衍生多孔材料在光催化制氢领域的进展。通过染料敏化或选择合适的官能团和金属节点会对Ti-MOFs的光响应及光催化活性产生重要影响。为进一步提高光催化析氢性能,可引入金属离子或与其他半导体结合形成多功能复合材料。此外, 通过在合适的条件下煅烧Ti-MOFs前驱体可制备更多新颖高效的光催化剂。最后,从关键的角度讨论了Ti-MOFs及其衍生多孔材料未来在光催化分解水制氢领域的机遇和挑战。

低温金属离子电池负极材料的研究进展

摘要:环境污染与温室效应的日益严重促进了清洁二次能源的发展与利用。具有高能量密度、环境友好等特性的锂离子电池成为最佳的储能载体。但当温度低于0℃时,传统石墨负极难嵌锂,电池性能急剧恶化,且低温充电时易析锂引发安全问题。为了满足锂离子电池的低温应用需求,通过改变电解液成分使其熔点降低,并调节SEI成分与去溶剂化过程,能够降低电荷转移阻抗,但石墨负极的本质属性使其低温应用受到限制。为从根源上解决锂离子电池低温性能差的问题,需要寻找具有适中工作电位、高离子扩散能力、高容量的新型负极材料替代传统石墨负极。嵌入式负极材料中,钛酸锂和二氧化钛具有较好的低温与倍率性能,但能量密度较低,应用范围受到限制,研究重点在于进一步挖掘其低温高倍率能力,使其应用在较为恶劣的服役环境中。合金的嵌锂反应在低温下较易进行,并且能够提供较高容量,其是极具潜力的锂离子电池低温负极材料,可以通过复合结构设计与表面改性提升其低温性能与循环寿命。基于转化反应的负极材料通常具有较高的赝电容效应,较快的表面反应受温度的影响较小,能够在低温下实现快速的充放电,通过纳米结构设计等方法能够进一步增强材料的赝电容效应。尽管Na、K、Mg 等新型金属离子电池能量密度较低,但资源丰富,并且本征低温性能优于锂离子电池,在寻找与之适配的负极材料后有望成为重要的低温储能器件。本文根据金属离子在负极材料中的存储方式来分类,综述了低温锂离子电池以及新型金属离子电池负极材料的研究进展,并展望了低温负极材料的发展趋势。

空间太阳电池柔性封装材料与技术研究进展

摘要:基于深空探测、空间电站以及商业航天、微纳卫星、长航时临近空间飞行等任务需求,高效率、轻量化、柔性化、高可靠性是未来空间太阳电池阵发展的主题。太阳电池阵由传统的刚性电池阵、半刚性电池阵向柔性电池阵发展。航天器在轨服役过程中需遭受带电粒子辐射、紫外辐射、原子氧等空间环境,因此需在电池表面封装防护层以减缓电池性能退化。作为太阳电池辐射屏蔽层,盖片的辐射防护性能、光学性能、力学性能是保证电池长期在轨高效稳定运行的核心要素。本文总结了近年来聚硅氧烷、透明聚酰亚胺、赝形玻璃盖片等太阳电池柔性封装材料研究进展,归纳了相关的空间环境模拟试验与在轨暴露试验结果,最后针对太阳电池柔性封装材料与技术的发展及应用进行了探讨展望。

水系锌离子电池的最新研究进展

摘要:储能具有能量密度高、响应时间快、维护成本低、安装灵活方便等特点,是未来储能技术的热点发展方向。近年来,锌离子电池由于其成本低廉、比容量高等优点,具有良好的发展前景。水系锌离子电池正极主要有钒基化合物、锰基化合物和普鲁士蓝类似物; 负极主要为锌负极;电解液包括水凝胶电解液、离子液、盐包水电解液和具有添加物的电解液。然而,对正极材料而言,锰基化合物中的Mn2+溶解、钒基化合物放电电压过低、普鲁士蓝类似物比容量较低都影响了锌离子电池的性能。锌电极作为锌离子电池负极面临的挑战主要包括: ( 1) 锌枝晶生长; ( 2) 电解液持续消耗和自放电问题; ( 3) 不可逆副产物的产生。水系电解液在充放电过程中会发生水分解及蒸发,影响电池性能。研究者近年来致力于通过掺杂其他元素、表面涂覆与包覆等方式制备新型电极材料来改善水系锌离子电池正极,通过界面修饰、进行新型锌负极的三维结构设计以及新型电解液的设计研发来减少锌枝晶产生,同时向电解液中添加其他溶液可以拓宽电化学窗口,以得到高性能的水系锌离子电池。目前,向正极材料中掺杂钙、镁、钴等元素和表面包覆以聚吡咯为主的高分子导电聚合物制备的新型电极材料已被成功应用。金属离子合适比例的掺杂不仅可以提高材料容量,同时也形成了有利于Zn2+脱嵌的稳定结构。对锌负极修饰如二氧化钛( TiO2 ) 、金纳米颗粒、聚乙烯醇缩丁醛( PVB) 的表面镀层,或在电解液中添加合适的添加剂,能够提高锌负极的可逆性和稳定性,抑制锌枝晶的生长。上述方法可以直接或间接地提高水系锌离子电池的循环稳定性和库仑效率。本文首先介绍了锌离子电池概况,然后重点阐述了目前水系锌离子电池正极材料、负极材料、电解液和隔膜的研究进展,包括各方面存在的挑战及现有的解决策略,最后对水系锌离子电池电极材料、电解液和隔膜未来的发展进行了展望,为开发制备高性能水系锌离子电池提供了思路。

水系锌离子电池负极改性策略研究进展

摘要:水系锌离子电池因其安全性高、离子导电率高、理论比容量高、成本低廉等优点,成为一类颇有前景的规模化储能材料。然而,锌负极在充放电过程中难以避免会出现枝晶生长和析氢腐蚀等棘手问题,严重制约了水系锌离子电池的循环寿命与实际应用的推广。本文首先分析了上述关键问题的成因和基本机制,系统阐述了目前锌负极的改性策略的4个方向,包括:负极材料构筑、涂层表面钝化、隔膜改性、电解液优化,重点论述了4类改性策略的设计要点与改性原理,并对锌负极的发展趋势进行了展望,为推动高性能水系锌离子电池发展提供参考。

钠离子电池合金化负极材料研究及应用进展

摘要:钠离子电池凭借钠资源丰富、分布广泛、价格低廉的优势在大规模储能领域具有重要的应用前景, 可与锂离子电池形成优势互补。负极材料是电池化学的关键组成, 其能量密度、使用寿命等直接影响着电池性能。合金化材料具有理论比容量高、工作电压适宜等优势, 被认为是一类有应用潜力的储钠负极。然而, 这类材料发生合金化反应时体积膨胀严重, 电极材料易粉化脱落, 造成电化学稳定性欠佳。目前, 主要通过材料微纳结构设计、界面化学调控、碳材料复合、表面包覆、电解液优化等方法来改善其电化学性能。本文综述了合金化负极材料的最新研究进展, 探讨了其发展面临的瓶颈以及解决方案, 介绍了基于合金化负极的钠离子全电池构筑策略和应用实例, 为高性能钠离子电池的发展提供一定参考依据。

镁空气电池阳极材料的研究进展

摘要: 镁空气电池由于低成本、高能量密度、高电化学当量等优点,在绿色清洁能源中备受关注。镁空气电池的研究发展仍受到极大阻碍,主要原因在于镁合金在应用过程中存在电池放电电压低、阳极利用效率低、自腐蚀速率大等问题。造成这些问题的原因在于镁合金本身存在的负差数效应、放电产物钝化、合金组织不均匀等。围绕镁空气电池阳极材料,首先对镁合金的阳极反应机理和存在的问题进行了总结,然后分别从合金化、塑性加工工艺、热处理工艺三方面综述了镁合金电化学性能的改善方法,最后展望了镁空气电池阳极材料的未来发展方向。