金属化合物在锂硫电池正极材料及夹层中的应用

摘要:在能源危机的驱使下,电动汽车以及大型储能装置的快速发展需要高能量密度的锂二次电池来实现,锂硫电池硫电极因具有高理论比容量和能量密度而倍受关注。此外,单质硫具有储量丰富、成本低和无毒等优点,使得锂硫电池更具有商业竞争力,因此锂硫电池被认为是最有前途的二次电池之一。然而,锂硫电池依然存在电导率低、穿梭效应、体积膨胀和锂枝晶等问题,这限制其广泛应用。因此,研究者们从正极材料和夹层着手,除了对正极材料的导电性加以改善之外,主要从限制多硫化物的穿梭效应和缓冲正极体积膨胀进行研究。研究发现,相比碳基和聚合物基正极材料,金属化合物基正极材料可以更好地改善锂硫电池的倍率性能和循环稳定性。此外,金属化合物材料作为夹层时同样可以有效缓解这些问题,能够更好地抑制多硫化物的溶解和扩散,减少穿梭效应,提高锂硫电池的电化学性能。一些金属氧化物、金属硫化物、金属氮化物、金属磷化物等作为锂硫电池正极材料或夹层都取得了重大进展。对于部分极性金属化合物而言,其不仅能化学吸附充放电中间产物多硫化物,有效改善硫正极的循环稳定性,而且还能在氧化还原反应中表现出电催化活性,加快多硫化物的转化,提高硫正极的倍率性能。本文综述了近年来金属化合物基正极材料及夹层的研究进展并对其发展前景进行了展望,以期为制备优异性能的锂硫电池正极材料及夹层提供参考。

锂离子电池用纳米碳材料研究进展

摘要:锂离子电池作为最有前景的储能器件之一,已经在便携式电子设备上广泛应用。然而使用传统电极材料,电池的能量密度和功率密度不够高、耐久性差、成本高,限制了其在电动汽车等方面的大规模应用。纳米碳材料的发展为设计适合锂离子电池的新型储能材料提供了机会。纳米碳材料作为一种新型碳材料具有许多独特的性能,包括独特的形貌结构、高比表面积、低扩散距离、高电导率和离子导电性能、可控的合成和掺杂等优点。因此,纳米碳材料在高可逆容量、高功率密度、长循环稳定性和高安全性锂离子电池中具有较大的应用前景。然而,纳米碳材料普遍存在首次库仑效率低、电压滞后等缺点,且纳米碳材料的电化学性能取决于碳材料的形貌和微观结构。解决这一问题最常用的方法主要有:(1)通过对纳米碳材料的形貌和微结构调控来改善其电化学性能;(2) 通过异质原子掺杂改善纳米碳材料的电化学性能;(3) 将纳米碳与其他储锂材料复合形成复合电极材料。本文主要综述了富勒烯、石墨烯、碳纳米管和多孔碳等四种具有代表性的纳米碳材料在锂离子电池中的最新研究进展,系统归纳了纳米结构和形貌对电化学性能的影响,讨论了纳米碳的合成、电化学储锂性能和电极反应机理。本文还对纳米碳材料未来在锂离子电池应用中需要解决的关键问题进行了总结与展望。

三维打印技术在电化学储能器件中的应用研究进展

摘要:三维打印作为一种新型的加工工艺,其独有的复杂形状定制、快速成型的特点使得其正成为电化学储能器件设计与制造领域的研究热点。目前,基于多种三维打印工艺,已经可以初步实现储能器件电极、电解质的打印构筑,且所打印器件在微型化与集成应用等方面均表现出传统工艺难以实现的独特优势。然而,可打印材料的匮乏是目前阻碍三维打印电化学储能器件进一步发展的关键问题。现有的商用可打印材料多为结构材料,其较低的电导率与电化学活性难以满足电化学储能器件的实际应用需求。因此,近年来,研究者们从三维打印的工艺原理出发,通过合理的墨水设计,直接或间接地实现了多种电化学储能器件的打印构筑,所打印器件也表现出较为优异的电化学性能。在此基础上,利用三维打印在复杂结构快速成型方面的优势,研究者们可以根据产品需求,通过结构设计与优化,实现电极、电解质等部件在电化学活性以及力学性能方面的提升,获得具备柔性化、微型化等特征的高性能储能器件。本文全面综述了三维打印技术在储能器件领域的应用研究进展。首先,总结了各类三维打印技术的基本原理以及基于三维打印的电极、电解质设计与构筑的研究现状;其次,讨论了三维打印储能器件在可穿戴设备以及微型电子器件集成等方面的应用案例;最后,结合实际应用需求,分析了三维打印储能器件制备过程中存在的问题及研究方向,以期为三维打印在电化学储能器件领域的应用提供参考。

锂离子电池三元层状氧化物正极材料的研究进展

摘要: 锂离子电池被认为是实现动力电池规模化应用的最有前途的储能体系之一。但是传统锂离子电池的能量密度、功率密度及安全性等方面还无法满足电动汽车规模化发展的需求。正极材料作为锂离子电池中唯一提供锂离子的材料,其性能好坏直接影响了锂离子电池的性能。因此,开发兼具高能量密度、高功率密度、高安全性且价格低廉的正极材料极为重要。三元层状过渡金属氧化物正极材料因具有理论容量高、造价低、毒性低等优点被认为是下一代锂离子电池最具潜力的正极材料。但是,在高电压下却存在循环不稳定、倍率性能差及存储性能差等问题,制约了其在电动汽车上的广泛应用。元素掺杂和表面包覆等改性策略能有效克服三元材料存在的缺陷,提高三元正极材料的性能,一直是锂离子电池正极材料领域的重要研究方向。本文简述了常见的几种正极材料,着重介绍了三元层状过渡金属氧化物正极材料的优缺点和改性进展。

金属有机骨架材料在镁基储氢材料中的应用

摘要:能量密度高、热值大、资源丰富、无污染、可储存、可再生、可燃烧和可发电的氢能, 被誉为21世纪解决能源危机和缓解温室效应的“终极能源”。 MgH2因其较高的理论储氢容量, 有望成为未来车载氢能源载体而备受关注,但其过高的热力学稳定性、缓慢的吸放氢动力学等缺点限制了其工程应用。比表面积高、结构性质可调以及金属离子可高效利用的金属有机骨架(MOFs)材料,在镁基材料储氢性能的改善方面展现出良好的应用前景。概述了MOFs材料对镁基材料储氢性能的催化掺杂改性、纳米限域催化改性,以及MOFs材料的常见制备方法,并对该领域的研究前景进行展望。

中国电站用钢技术现状和未来发展

摘要: 超超临界火电机组和百万千瓦核电机组建设是中国优化电源结构和实现国家节能减排战略目标的最重要措施。钢铁材料技术是保证超超临界火电机组和百万千瓦核电机组建设顺利进行的最重要基础之一。介绍了迄今中国在超超临界火电机组和百万千瓦核电机组用钢方面的研发进展和取得的成就, 并与国外同类技术的研发水平进行了对比。同时, 也分析和讨论了中国超超临界火电机组和百万千瓦核电机组用钢技术的未来发展问题。

基于机器学习算法的核电用奥氏体不锈钢力学性能预测

摘要:由于受到严苛的服役环境和中子辐照的影响,核动力装置用奥氏体不锈钢作为结构材料应用时对力学性能要求较高,因此对于奥氏体不锈钢力学性能的预测很值得关注和研究。将机器学习算法应用于材料信息学并对机器学习的方法和原理作了简要说明,重点介绍了基于奥氏体不锈钢力学性能数据库,以奥氏体不锈钢力学性能预测为应用实例建立了机器学习模型和系统平台,最后通过预测值与真实值的对比验证对模型进行了评估。研究结果表明,构建的相关模型可以对奥氏体不锈钢的抗拉强度和屈服强度进行有效预测,R2均在0.90以上。对现阶段机器学习在性能预测和材料研发领域急需解决的问题进行了探讨,并对其未来的发展方向进行了展望。

退役锂离子电池正极材料直接回收的研究现状和展望

摘要:随着全球各国大力发展新能源汽车产业,以锂离子电池(LIBs)为主的动力电池数量急剧增长。然而,LIBs的使用寿命有限,早期装机的LIBs在近几年已达到其退役要求。大量的退役电池亟需有效地回收处理,否则会对环境和人类造成危害,同时导致贵金属资源的流失。传统的电池回收技术以火法和湿法回收为主,能够实现对退役LIBs各种成分的精细化回收及再利用,但通常污染大、能耗高、回收周期长。因此,亟需开发绿色、节能、高效的LIBs回收技术。近年来,新兴的电池材料直接回收技术因工艺简单、碳排放少、能耗低、回收周期短等优势而备受关注。综述了目前主流的正极材料直接回收技术及其优缺点,分析了其在低成本、低能耗等方面的贡献,并对正极材料的功能化及LIBs闭环回收的最新进展做了介绍。最后,展望了退役LIBs正极材料及其他组分回收再利用的前景和发展趋势,旨在为电池回收领域研究提供参考。

用于燃料电池双极板的不锈钢成分优化

摘要:利用团簇式方法,通过对Fe-Cr-Ni合金进行成分精修,在保持合金良好耐蚀性的同时,提升不锈钢的导电性。首先,解析316L不锈钢的成分,获得其Fe-Cr-Ni 基础成分的理想团簇式[Ni-Fe11Ni1]Cr3,进而,固定Cr3,将Ni含量(质量分数)从6.63%变到32.74%,得到符合团簇成分通式[Ni-Fe13-xNix-1]Cr3 = Fe13-xNixCr3 (x = 1~5)的合金成分。利用真空电弧熔炼并铜模浇注成直径10 mm试棒,随后进行固溶及水淬处理。实验结果表明,在模拟双极板服役环境(0.5 mol/L H2SO4+2×10-6 HF)下,随着Ni 含量提高,在酸钝化后,自腐蚀电流密度由14.39μA/cm2降低至1.10μA/cm2,在电化学氮化后,由1.03μA/cm2降低至0.29μA/cm2。这些数据均优于参照合金316L不锈钢(分别为7.51和0.47μA/cm2),甚至低于0.5μA/cm2的目前产业目标。在0.064 MPa压力下接触电阻逐渐减小(酸钝化后,从1.16Ω·cm2减至0.98Ω·cm2,电化学氮化后,从1.07Ω·cm2减至1.03Ω·cm2),优于316L不锈钢的1.1Ω·cm2。上述实验结果表明,Ni含量的持续添加能够提升合金作为双极板的使役性能,最佳的不锈钢成分配方为[Ni-Fe10Ni2]Cr3,可以作为替代316L的新型不锈钢。电化学氮化处理方法在提升合金耐蚀性的同时,保持了相当高的接触电阻,是较好的不锈钢双极板表面处理方法。

超长稳定的混合阳离子钙钛矿太阳能电池性能优化研究

摘要: 钙钛矿太阳能电池(PSCs)发展迅速, 其能量转换效率(PCE)被一再刷新, 但长期稳定性还有待提高。目前大部分高效率钙钛矿太阳能电池在惰性气体环境中完成制备, 成本高且操作空间有限, 不利于产业化应用。本研究成功在空气中制备了具有超长稳定性的混合阳离子钙钛矿太阳能电池,系统探究了A位阳离子掺杂对钙钛矿微观结构、光电性能以及稳定性的影响。实验结果表明, 掺杂FA+和Cs+可以提高钙钛矿薄膜质量, 优化钙钛矿/SnO2的能级排列, 抑制载流子复合, 显著提高器件的光电转换效率、长期以及湿热稳定性。Cs0.05MA0.35FA0.6PbI3电池的最佳PCE为19.34%, 在(20±5)℃, 相对湿度