激光熔覆高熵合金涂层的研究进展

摘要:近年来,高熵合金凭借其耐磨损、耐腐蚀、强韧性、高温抗氧化性和生物相容性等优异性能引起了人们广泛关注。激光熔覆是一种涉及多学科的现代表面强化技术,具有能量密度高、快速加热和冷却、稀释率低、热影响区小、成分偏析少、冶金结合性好等特点。本文综述了激光熔覆高熵合金涂层的最新研究进展。首先,概述了高熵合金的设计理念以及激光熔覆高熵合金涂层的优点。然后,介绍了激光熔覆高熵合金涂层的相结构和性能特征,以及合金元素对其影响规律,讨论了激光工艺参数和辅助激光熔覆技术对激光熔覆高熵合金涂层组织结构和性能的影响。最后,总结与展望了激光熔覆高熵合金涂层的发展趋势。

超细晶和纳米晶钨基合金制备方法的研究现状与进展

摘要:先进核聚变能系统的发展需要具有更加优良力学性能和抗辐照性能的钨基合金。超细晶钨(晶粒尺寸0.1~1.0μm)和纳米晶钨(晶粒尺寸小于0.1μm)具有低溅射腐蚀速率、良好的抗辐照能力以及较高的高温强度等,因而在核工业、航空航天、电子器件等领域中具有重要的潜在应用价值。本文从自上而下法和自下而上法两个方面介绍了超细晶和纳米晶钨基合金的制备方法及其主要性能,综述了国内外在制备超细晶和纳米晶钨基合金方向上的最新成果,分析了国内外超细晶和纳米晶钨基合金的制备技术、制备过程及其存在的问题,并对超细晶和纳米晶钨的应用和发展方向进行了展望。

反应堆水化学对锆合金耐腐蚀性能影响研究现状

摘要:锆合金由于其良好的综合性能在压水反应堆燃料包壳领域得到广泛应用,在反应堆运行过程中,高温水腐蚀是导致锆合金包壳失效并决定燃料服役寿命的主要原因。一回路水环境作为锆合金包壳的服役环境,需要起到传递热能、抑制腐蚀产物沉积等作用,水化学的优化是提高反应堆经济性与安全性的重要措施之一。锆合金的耐腐蚀性能受到水化学环境显著影响,本文综述了几种水化学参数对锆合金耐腐蚀性能的影响研究进展,探讨了不同水化学参数对锆合金腐蚀的影响机理,为反应堆水化学改善以及锆合金腐蚀行为研究提供参考,并对未来反应堆水化学以及锆合金材料的研究方向作出展望。

钨基合金靶材的粉末冶金制备工艺及其磁控溅射薄膜的研究进展

摘要:具有高密度、高纯度、高熔点及优异机械性能的钨基合金靶材在磁控溅射应用领域具有重要的应用价值。制备方法包括粉末冶金、熔炼等,其中粉末冶金法以较好的成分均匀性和细密的显微结构广受关注。磁控溅射作为一种先进的薄膜沉积技术,因其高效性和精确控制能力,被广泛用于钨基合金薄膜的制备。以钨基合金靶材为原材料,通过磁控溅射的方法制备的W-Mo、W-Cu、W-Ti、W-B 等薄膜,目前已广泛应用于电子器件、机械加工和等离子体物理研究等多个领域。本文首先介绍了粉末冶金钨基靶材的主要制备方法,如热压、热等静压、放电等离子烧结技术等; 然后,介绍了钨基合金靶材磁控溅射薄膜在无扩散屏障材料、超导材料、面向等离子体材料以及硬质涂层材料等领域的应用,并对其抗扩散性能、摩擦磨损性能以及其抗腐蚀氧化性能进行了介绍与分析。最后,展望了钨基合金靶材在未来在各个领域中的广阔应用前景。

金属镓提取工艺研究进展

摘要:镓作为一种战略金属,广泛应用于现代军事、无线通讯、生物、太阳能电池、半导体等诸多新兴领域,在航空航天中也具有重要地位。镓主要伴生于铝土矿、闪锌矿、粉煤灰等,具有低熔点、高沸点等特性。随着砷化镓产品的使用,不可避免地产生大量废料,这些废料中包含丰富的镓资源,有必要对其进行回收以减少资源浪费。本文从镓的来源角度出发,详细综述了从矿物加工副产品提取原生镓的技术现状与从砷化镓废料中再生镓的现有方法,归纳总结了各方法的工艺特点及技术指标,并展望了镓的提取与二次资源回收技术的未来发展方向。

机械合金化高熵合金的力学性能和耐腐蚀性能研究

摘要:机械合金化(MA)是一种借助高能球磨机来制备高熵合金(HEAs)的方法,该方法能在较低的温度下使合金元素有效且均匀地融合,从而得到性能优良的高熵合金材料。本工作采用机械合金化方法制备了FeCoNiCrMn 高熵合金,并对其晶体结构、力学性能和耐腐蚀性能进行了表征。研究结果显示,机械合金化制备的FeCoNiCrMn高熵合金为FCC晶体结构,烧结压力的增加不会引起晶格常数的变化。FeCoNiCrMn高熵合金自身密度较高,在不同烧结压力下均表现出良好的抗拉性和延伸性,在塑性和断裂强度方面也呈现出较好的力学性能优势。同时,FeCoNiCrMn高熵合金在3.5%(质量分数)NaCl溶液、0.5mol/L H2SO2溶液、1mol/L HCl溶液和1mol/L NaOH溶液等腐蚀介质中均表现出较高的抗腐蚀性。因此,机械合金化高熵合金的力学性能和耐腐蚀性能较为优良,具有良好的应用前景。

锻造次数对纯钽组织、织构与硬度的影响

摘要: 纯钽的组织和织构会影响电子工业用钽靶的性能,为明确纯钽锻造过程中微观组织和织构的演变特征,在液压机上对电子束熔炼的纯钽进行锻造变形,随后进行1050℃退火处理,采用背散射衍射和显微硬度技术系统研究锻造次数(1~3次)对纯钽微观组织、织构、再结晶率及硬度的影响。结果表明: 1次锻造退火后的纯钽组织粗大且再结晶率较低,仅为72%;随着锻造次数的增加,纯钽的平均再结晶晶粒尺寸逐渐减小,再结晶率逐渐增加。3次锻造退火后,纯钽内部形成了强烈的{111}<uvw>织构,并且{111}晶粒占比达39.7%。维氏硬度随着锻造次数的增加而增大,3次锻造退火后的平均硬度值达到101.3 HV。

先进制程芯片用超高纯钽靶制备工艺研究进展

摘要:通过物理气相沉积(physical vapor deposition,PVD)制备的Ta/TaN层具有优异的抗Cu-Si扩散性与良好的接触电阻等特性,随着半导体先进制程芯片的发展,其成为了扩散阻挡层的最佳选择。然而,作为PVD的重要原料- 磁控溅射超高纯Ta靶往往会因晶粒尺寸、织构梯度均匀性的问题,极大地影响沉积薄膜厚度的均匀性,从而影响先进制程芯片良率。因此,结合先进制程芯片的特殊应用环境,本文简述了集成电路用PVD工艺过程与先进制程对Ta靶的应用需求,并综述了近些年集成电路用超高纯Ta常用提纯与晶粒、织构控制工艺的研究进展,包括Ta粉提纯、电子束熔炼、锻造、轧制、再结晶退火工艺以及加工对最终Ta靶溅射性能的影响,针对各类工艺对Ta晶粒、织构的影响进行了阐述。最后,对磁控溅射超高纯Ta靶在先进制程芯片的应用现状与制备工艺难点进行了总结和展望,指出领域内新出现的更具高经济性与材料利用率的超高寿命高厚度(0.65英寸,1英寸=25.4 mm)Ta靶,以及对超高纯Ta形变热处理工艺研发与优化的迫切需求。

共晶高熵合金十年发展回顾(2014—2024):设计、制备与应用

摘要:共晶合金是以凝固过程发生共晶反应命名的一类多相合金,具有悠久的历史,是应用最广的铸造合金。高熵合金是多主元的新型合金,自2004 年提出以来取得了迅速发展。共晶高熵合金结合了共晶合金和高熵合金的优点,于2014 年首次公开报道。经历十年发展,共晶高熵合金已经快速经历了成分设计、组织/性能调控、大规模制备与应用几个阶段。共晶高熵合金独特的微观组织特征和优异的综合性能使其在多个领域展现出广阔的应用前景,成为近年来备受关注的新型合金材料。本文对过去十年共晶高熵合金的成分设计、制备和应用进展进行了回顾,并对未来发展趋势进行了展望。

激光增材制造高熵合金强化机制的研究进展

摘要:随着航空事业的飞速发展,对合金材料的性能提出了更高要求。在传统合金材料性能提升空间逐渐受限的背景下,高熵合金凭借其独特的多主元设计,不仅在力学性能上表现优异,还在耐腐蚀、耐高温等方面展现出其独到之处,成为最具发展潜力的材料之一。激光增材制造技术为高熵合金的设计与制造提供了新的工艺技术途径,确保了成形件具有结构致密、组织均匀等优势。本文总结了激光增材制造高熵合金强化机制方面的研究进展,列举了包括应变诱导孪晶强化、变形诱导相变强化、细晶强化、固溶强化以及第二相强化等机制的典型案例,重点阐述了工艺特性对强化机制的显著影响。结果表明,激光增材制造技术的工艺特点能够增强高熵合金强化机制的效果,进而提升合金的力学性能。